INCONSISTENT HOMOGENEOUS LINEAR INEQUALITIES

BY C. M. ABLow AND D. J. KAYLOR

Communicated by A. S. Householder, September 14, 1964

If the set of linear inequalities

$$\sum_{j=1}^{N} a_{ij} x_j > 0, \quad i = 1, 2, \ldots, M,$$

is consistent, there is an open convex polyhedral region of E^N, any point of which represents a solution vector x for the system. Iterative methods for finding a solution point have been given by Agmon [1] and Novikoff [2], among others.

If the set is inconsistent no such region exists. A generalization of the concept of solution is a collection of vectors $x^{(1)}, x^{(2)}, \ldots, x^{(2k+1)}$, or "committee," such that each inequality is satisfied by a majority of the members of the committee. This notion has application in pattern recognition [3].

The set of inequalities is contradictory if two of the inequalities represent half spaces separated by the same plane. A simple geometric argument shows that a committee solution exists for any noncontradictory set of homogeneous linear inequalities. The proof will be published elsewhere [4].

REFERENCES

STANFORD RESEARCH INSTITUTE

724