Consider an essentially positive [2] system of linear DE's, that is, any system of the form

\[\frac{dx_i}{dt} = \sum q_{ij}(t)x_j, \quad q_{ij}(t) > 0 \text{ if } i \neq j. \]

This maps the positive hyperoctant \(C \) of real \((x_1, \ldots, x_n) \)-space into itself. The effect of (1) in a small increment of time \(dt \) is, using formulas of Ostrowski [3], to map \(C \) into an interior polyhedral cone whose projective diameter is given for \(P = \exp[Q(t)dt] = I + Q(t)dt + \cdots \) by

\[\ln\left\{ \sup_{i,j,k,l}(p_{ki}p_{lj}/p_{kj}p_{li}) \right\}. \]

This is maximized asymptotically (as \(dt \downarrow 0 \)) by setting \(k=i, l=j \), so that the numerator approaches 1. Hence the projective diameter of \(e^{Q(t)dt}(C) \) is, asymptotically,

\[\Delta = -\ln\left\{ \inf_{i,j}(q_{ij}q_{ji})d^2 \right\}, \quad q_{ij} = q_{ij}(t). \]

By a basic theorem of [1], all projective distances in \(C \) are therefore contracted by a factor at most

\[\tanh(\Delta/4) = (1 - e^{-\Delta/2})/(1 + e^{-\Delta/2}) = 1 - \psi(t)dt, \quad \text{where } \psi(t) = 2[\inf_{i,j}q_{ij}(t)q_{ji}(t)]^{1/2}. \]

This proves the following basic result.

Lemma. For any essentially positive system (1) of linear DE's, all projective distances in \(C \) are contracted by an asymptotic factor at most \(1 - \psi(t)dt \) in the time interval \((t, t+dt)\), where \(\psi(t) \) is given by (4).

Integrating with respect to \(t \), we deduce the

Theorem. For any essentially positive system (1) of linear DE's, let \(\theta(x(t), y(t)) \) denote the projective distance in \(C \) between two solutions of (1) which are positive on \([0, \infty)\). Then

\[\theta(x(t), y(t)) \leq \theta(x(0), y(0)) \exp\left[-\int_0^t \psi(s)ds \right], \quad t > 0. \]

For example, consider the interesting case \(d^2x/dt^2 = p(t)x, \quad p(t) > 0. \) Then
has only one pair of off-diagonal entries, and $\psi(t) = 2\sqrt{\langle p(t) \rangle}$. Hence we have the

COROLLARY. Let $x(t)$ and $y(t)$ be any two solutions of $d^2x/dt^2 = p(t)x$ with $p(t) > 0$, $x(0) > 0$, $x'(0) > 0$, $y(0) > 0$, $y'(0) > 0$. Then

$$
\left| \ln \left[\frac{x(t)y'(t)}{x'(t)y(t)} \right] \right| \leq \left| \ln \left[\frac{x(0)y'(0)}{x'(0)y(0)} \right] \right| \exp \left[-2 \int_0^t (p(s)) ds \right].
$$

The preceding result is helpful for proving the convergence of all positive solutions of an essentially positive system (1) to a unique limiting asymptotic behavior as $t \to \infty$.

To treat similarly $d^2x/dt^2 = p(t)x$ with $p(t) > 0$, however, the preceding technique must be modified.

REFERENCES

3. A. Ostrowski, in *Recent advances in matrix theory*, Univ. of Wisconsin Press, Madison, Wis., 1964.

HARVARD UNIVERSITY AND

U. S. ARMY ELECTRONICS LABORATORIES, FORT MONMOUTH, NEW JERSEY