THE GALOIS THEORY OF INFINITE PURELY INSEPARABLE EXTENSIONS

BY PAUL PONOMARENKO

Communicated by A. D. Mostow, June 20, 1965

Introduction. Given a field K of characteristic $p \neq 0$, denote by $\text{Der}(K)$ the set of all derivations of K. Then $\text{Der}(K)$ is a vector space over K, and a Lie subring of the ring of additive endomorphisms of K. Moreover, $\text{Der}(K)$ is closed under pth powers. A Lie ring satisfying this additional closure property is called a restricted Lie ring. Take any subfield F of K such that K over F is of exponent one, i.e., $K^p \subseteq F$. Denote by $\text{Der}(K/F)$ the set of all derivations of K which vanish on F. Then $\text{Der}(K/F)$ is a vector subspace and restricted Lie subring of $\text{Der}(K)$. On the other hand, take a restricted Lie subring D of $\text{Der}(K)$ which is also a vector subspace over K. Let $\Phi(D) = \{ x \in K \mid \lambda(x) = 0 \text{ for every } \lambda \in D \}$. Then $\Phi(D)$ is a subfield of K such that K over $\Phi(D)$ is of exponent one. This gives a one-to-one correspondence between subfields F of K over which K is finite and of exponent one, and restricted Lie subrings of finite dimension over K (cf. [1] and [2]). The purpose of this note is to extend this Galois correspondence to the infinite dimensional case. The first half of the correspondence is valid regardless of the dimension of K over F, i.e., $\Phi(\text{Der}(K/F)) = F$ if $K^p \subseteq F$ [1, p. 183]. However, to establish the second half of the correspondence, one must put a stronger condition on the vector subspace of $\text{Der}(K)$, namely, that of p-convexity.

p-convexity. Let us fix a field K of characteristic $p \neq 0$. Since we shall only consider subfields F for which $K^p \subseteq F$, we should designate K^p as our base field. For every $x \in K$, let H_x denote the set of all λ in $\text{Der}(K)$ such that $\lambda(x) = 0$. H_x may be regarded as a "distinguished" hyperplane in $\text{Der}(K)$. We call a subspace V of $\text{Der}(K)$ p-convex if $V = \cap (V + H_x)$, the intersection being taken over all $x \in K$.

Theorem 1. Let V be a vector subspace of $\text{Der}(K)$ which is p-convex, and let $F = \Phi(V)$. Then $\text{Der}(K/F) = V$, which implies that every p-convex subspace of $\text{Der}(K)$ is automatically a restricted Lie subring of $\text{Der}(K)$. Conversely, if F is a subfield of K containing K^p, then $\text{Der}(K/F)$ is p-convex.

Proof. Let $\lambda \in \text{Der}(K/F)$. Take any element x of K. If x is in F, then $\lambda(x) = 0 = \mu(x)$ for any $\mu \in V$. Suppose that x is not in F. Let $E_x = K^p(x)$. Then V restricted to E_x must be a nonzero vector subspace of $\text{Der}(E_x, K)$, the set of all derivations of E_x into K. Denote by
$V(E_z, K)$ the restriction of V to E_z. Since $[E_z: K^p] = p$, $D(E_z, K)$ is of dimension one over K [1, p. 182], so that $V(E_z, K) = D(E_z, K)$. This shows that $\lambda = \mu$ on E_z for some $\mu \in V$. Therefore, in either case, we have $\lambda = \mu + (\mu - \lambda) \in V + H_z$, which proves the first assertion. Now let F be a subfield of K containing K^p. Let $\lambda \in \cap_x (\text{Der}(K/F) + H_x)$. Then for every $x \in K$, there exists an element μ of $\text{Der}(K/F)$ such that $\lambda(x) = \mu(x)$. If $x \in F$, we have $\mu(x) = 0$, so that $\lambda \in \text{Der}(K/F)$. This proves the second assertion.

Note that any restricted Lie subring D of $\text{Der}(K)$ of finite dimension over K is automatically p-convex. This follows from the second half of Theorem 1 and the fact that $D = \text{Der}(K/\Phi(D))$. However, this is not true in general for infinite dimensional restricted Lie subrings.

Theorem 2. Suppose that K over F is infinite and purely inseparable of exponent one. Then there exists an infinite dimensional restricted Lie subring D_0 of $\text{Der}(K)$ which is not p-convex.

Proof. Take a p-basis B of K over F. Of course B is infinite. For every element x_i of B there exists a derivation λ_i in $\text{Der}(K/F)$ such that $\lambda_i(x_i) = 1$, while $\lambda_i(x_j) = 0$ for any other x_j in B [1, p. 183]. Let D_0 be the vector subspace of $\text{Der}(K)$ spanned by the λ_i over K. Let μ be any derivation in D_0. Then μ vanishes on B, except for a finite subset B' of B, and μ^p vanishes on B except for a subset of B'. It follows that $\mu^p \in D_0$. In exactly the same manner one can show that $\lambda\mu - \mu\lambda$ is in D_0 if λ and μ are. Thus D_0 is a restricted Lie subring of $\text{Der}(K)$. Clearly, $\Phi(D_0) = F$, so we must show that $\text{Der}(K/F)$ contains D_0 properly. But this is a trivial consequence of the fact that there exists a μ in $\text{Der}(K/F)$ such that $\mu(x_i) = 1$ for every x_i in B [1, p. 181]. Such a μ can not be expressed as a finite linear combination of the x_i.

Q.E.D.

Remark. After finishing this note, the author has been informed that Gerstenhaber [3] has proved that the closedness with respect to the Krull topology, together with the notion of restricted subspace, characterizes the subspace $\text{Der}(K/F)$ of $\text{Der}(K)$.

References

Princeton University