A NEW LOCAL PROPERTY OF EMBEDDINGS

BY O. G. HARROLD

Communicated June 30, 1965

It is known that the possible embeddings of a topological \(n-1 \) manifold \(M^{n-1} \) in the euclidean space \(E^n \) differ in the cases \(n=3 \) and \(n>3 \) in a curious way. A topological \(n-1 \) sphere can fail to be locally flat at an arbitrary finite number of points if \(n=3 \). For \(n>3 \) this cannot happen at a set consisting of a single point [2]. It is unresolved if an \(S^{n-1} \) in \(E^n \) can fail to be locally flat at a pair of points. In this note we introduce a new notion, described in detail below, called a locally weakly flat embedding and show that if a manifold \(M^{n-1} \) in \(E^n \) is locally flat at each point except possibly at the points of a finite set \(Y \) and if \(M^{n-1} \) is locally weakly flat at each point of \(Y \), then \(M^{n-1} \) is in fact locally flat at every point. In the concluding paragraph an unsolved problem is posed.

Let \(p \in M^k \subset E^n \), or more generally \(M^k \subset M^n \). Suppose \(\epsilon > 0 \). Let \(B^*_\epsilon \) be a ball of diameter less than \(\epsilon \) whose interior contains \(p \). For \(0 < t \leq \epsilon \) let \(B_t \) denote a ball whose interior contains \(p \) and is concentric to \(B^*_\epsilon \), i.e., regard \(B_t \) as a topological product \(S^{n-1} \times [0, t] \) with \(S^{n-1} \times [0] \) identified with \(p \). For all \(t \) such that \(\epsilon - t \) is sufficiently small we hypothesize that \(B_t \cap M \) is a \(k-1 \) sphere such that the pairs

\[(E^n, B_t \cap M \times I^{n-k+1}) \approx (E^n, S^{k-1} \times I^{n-k+1})\]

are homeomorphic. If for a sequence of positive numbers \(\epsilon_1, \epsilon_2, \ldots \) converging to zero, this condition holds, we describe the embedding by saying \(M^k \) is locally weakly flat at \(p \). If this holds for all \(p \in M^k \), \(M^k \) is locally weakly flat in \(M^n \), denoted by LWF.

A comparison with other local properties of embeddings [3] shows that \(LF \Rightarrow LU \Rightarrow LWF \Rightarrow LPU \Rightarrow LPU \).

For \(n=3, k=2 \) these implications may be reversed [4]. There are examples, for \(n=3 \), that show that at a single point, local peripheral unknottedness, or local weakly flatness does not imply local flatness [5].

For \(n=3, k=1 \), LU and LPU are entirely independent. In this paper attention is restricted to \(k=n-1 \).

Theorem. Let \(M^{n-1} \subset E^n \) be a closed \(n-1 \) manifold that is locally

\[1\] Supported in part by NSF-Grant GP 4006.
flat at each point except possibly at the points of a finite set \(Y \). Suppose that \(M^{n-1} \) is LWF at each point. Then \(M^{n-1} \) is locally flat at each point.

The proof rests on an adaptation of a theorem of M. Brown’s to what I refer to as the “Turning Lemma” for annuli. The same idea can be used to establish a “Union Lemma” for \(n-1 \) disks in \(E^n \).

Notations. In order to ease our descriptions we define once and for all the meaning of

1. nice \(k \)-disk in \(S^k \), denoted by \(D^k \);
2. nice \(k \)-disk in \(E^{k+1} \), denoted by \(D^k \);
3. nice \(k \)-annulus in \(S^k \), denoted by \(A^k \);
4. nice \(k \)-annulus in \(E^{k+1} \), denoted by \(A^k \).

By (1) we mean the boundary \(\partial D^k \) of \(D^k \) has a shell neighborhood in \(S^k \). By (2) we mean that \(D^k \) is the image of an equatorial plane section under some homeomorphism of a standard \(k+1 \) ball into \(E^{k+1} \). By (3) we mean each boundary component of \(\partial A^k \), the boundary of \(A^k \), has a shell neighborhood in \(S^k \). By (4) we mean \(A^k \) is the image of an equatorial plane section under some homeomorphism of a standard \(I^2 \times S^{k-1} \) into \(E^{k+1} \).

Some recent results needed for the proof. 1. Let \(k \) be a homeomorphic embedding of \(S^n \times [-1, 1] \) into \(S^{n+1} \), where \([a, b]\) denotes the closed real number interval \(a \leq t \leq b \). Then the closure of either complementary domain of \(h(S^n \times [0]) \) is an \((n+1)\)-cell (Theorem 5 of A proof of the generalized Schoenflies theorem, M. Brown).

2. Let \(B \) be a subset of a metric space \(X \). Suppose \(B = U_1 \cup U_2 \), where \(U_1, U_2 \) are open in \(B \) and \(U_1 \cap U_2 \neq \emptyset \). If both \(U_1, U_2 \) are collared in \(X \), then \(B \) is collared in \(X \). If \(B \) is an orientable bounded manifold of dim \(n \) in \(E^{n+1} \), and \(B \) is collared on each “side,” \(B \) is bi-collared at each point of \(B \setminus \partial B \). (Lemma 4 of Locally flat embeddings of topological manifolds, M. Brown [1]).

3. Let \(D_1 \) and \(D_2 \) be topological \(n \)-disks in \(E^{n+1} \). Suppose each of \(D_1 \) and \(D_2 \) is nice (see above under Notations). Let \(D_1 \cap D_2 = \partial D_1 \cap \partial D_2 = S^{n-1} \). Suppose \(S^{n-1} \) lies in the interior of a nice annulus \(A \) that is a subset of \(D_1 \cup D_2 \). \(^2\) Then \(S = D_1 \cup D_2 \) is nice.

3’. Let \(D \) and \(A \) be respectively a nice \(n \)-disk, a nice \(n \)-annulus in \(E^{n+1} \). Suppose \(\overline{D} \cup \overline{A} \) is a disk. Further \(\partial \overline{D} \) lies in \(\text{Int} \overline{A} \). Then \(\overline{D} \cup \overline{A} \) is a nice disk in \(E^{n+1} \). The proofs of 3 and 3’ are so similar to that of 3’ we omit them.

\(^2\) The symbol “int” occurs in two senses. The meaning will be clear since in one case it means the bounded component of the complement of a set and in the other case it refers to the points not on the combinatorial boundary of some manifold with boundary.
THE TURNING LEMMA. Let F be a homeomorphism, $F: S^{n-1} \times I^2 \to E^{n+1}$. Let I_1 and I_2 be intervals lying in the interior of I^2 such that $I_1 \cap I_2 = \{0\}$, an endpoint of each of them. Suppose

(i) $F|S^{n-1} \times I_1 = A_1$, $F|S^{n-1} \times I_2 = A_2$, and

(ii) $F|S^{n-1} \times \{0\} = S^{n-1}$.

Then $A_1 \cup A_2$ is nice in E^{n+1}.

To put it another way, whenever two n-annuli A_1 and A_2 are nice in E^{n+1} and their common part is a component S_{12} of the boundary of each of them, and if F satisfies the consistency conditions (i) and (ii) above, then $A_1 \cup A_2$ is nice.

PROOF. Let g be a homeomorphism of I^2 on I^2 so that $I_1 \cup J_1$ is carried onto $I_2 \cup J_2$ carrying $\{0\}$ into an inner point of J_1, leaving the other endpoints fixed, and also leaving the points of $S' = S \cap I^2$ fixed. Then

$$G(x, y) = F(x, g(y))$$

defines a homeomorphism of $S^{n-1} \times I^2$ onto $F(S^{n-1} \times I^2)$ and A_1 onto \hat{A}_1 (say). Then $\text{Int}(A_1 \cup A_2) = \text{Int} A_1 \cup \text{Int} \hat{A}_1$ and $\text{Int} A_2 \cap \text{Int} \hat{A}_1$ is open and non-null. Then if $B = (\text{Int} A_2) \cup (\text{Int} \hat{A}_1)$, B is collared, and, in fact bi-collared. Hence $A_1 \cup A_2$ is nice in E^{n+1}.

PROOF OF THE THEOREM. Let p be a point of Y and ε sufficiently small that $S(p, \varepsilon) \cap (Y \setminus p) = \emptyset$ (the empty set).

Let B_1, B_2, \cdots be a sequence of balls with diameter approaching zero that are “concentric” about p, each of which meets M nicely, as guaranteed by the condition $(E^n, \hat{B}_i \cap M \times I^2) \approx (E^n, S^{n-2} \times I^2)$. The spheres $\hat{B}_i, \hat{B}_2, \cdots$ may be taken disjoint. Let \hat{B}_i and \hat{B}_{i+1} determine an annulus A_i on M. Since $\hat{B}_i \cap M$ is nice in M, a homeomorphism of \hat{B}_i onto itself moving points an arbitrarily small amount may be defined to insure A_i is an annulus. The boundary components of A_i are denoted by S_i and S_{i+1}. Let B_i be decomposed by S_i into two components C_i^N and C_i^S, whose closures are closed $n-1$ disks and the notation is chosen so that C_1^N, C_2^N, \cdots all lie on the same side of $E^n \setminus M$. Since S^{n-2} is nicely embedded in E^n, it is clear that the consistency conditions required in the hypotheses of 3' above hold for S_i relative to A_i and C_i^N. Hence $A_i \cup C_i^N$ is a nice disk F_i. Since S_{i+1} is nice relative to C_i^N and A_i, $C_{i+1}^N \cup A_i$ is a nice $n-1$ disk G_i. The conditions of 3 (above) are fulfilled so that $F_i \cup G_i$ is a flat $n-1$ sphere. By passing $n-1$ planes parallel to the base of an n-simplex that converge to the a
vertex, one may slice the n-simplex into a sequence of nice n-cells σ^n_i, \ldots with diameters approaching zero. By mapping each σ^n_i to $F_i \cup G_i$ so that the consecutive functions agree on the common face of σ^n_i and σ^n_{i+1}, the manifold M is seen to have a collar at p relative to the complementary domain determined by C^n_i, \ldots. A similar construction of the other side of M shows that M is in fact locally bi-collared at p.

By noting that the set Y of M consisting of points where M fails to be locally flat is closed, it is easy to extend the above theorem to the case cardinal of $Y \leq \aleph_0$.

Added in proof. Corollary. If S is an $n-1$ sphere that is locally flat except possibly at two points p and q and if S is LWF at either p or q, then S is flat.\footnote{One may define a concept of M^{n-1} being LWF with respect to the complementary domain A (or the other complementary domain B) and derive a similar result.}

A question we have been unable to resolve is contained in the following.

Problem. If M^{n-1} is LWF, is it LF in M^n? The result is known to be true for $n = 3$.

References

Florida State University