ROLLING

BY R. H. FOX

Communicated by N. E. Steenrod, June 28, 1965

If k is a tame arc in the 3-dimensional half-space $R^3_+ = (x, y, z, t: z \geq 0, t = 0)$ that spans the plane $R^2 = (x, y, z, t: z = 0, t = 0)$ then a locally flat 2-sphere S in the 4-dimensional space $R^4 = (x, y, z, t)$ is generated by k when R^3_+ is rotated about R^2. Nowadays the sphere S is said to be derived from k by spinning. By knotting k in various ways, various types of knotted spheres S can be obtained [1], but it is known that not every type of (locally flat) knotted sphere can be so obtained [2].

Some years ago I considered spheres S that are obtained from k by combining the spinning process with a simultaneous rotation of k about its "axis" (in R^3_+). This operation has come to be known as twist-spinning. The specific question that I raised at that time—whether the sphere obtained by twist-spinning a trefoil 3_1 (using a simple twist) is actually knotted—has been answered (in the negative) recently by C. Zeeman [3].

In this note I want to introduce another variation of the spinning process, one that I call roll-spinning. It is the same as twist-spinning except that instead of twisting, i.e. rotating k about its axis in R^3_+, I roll the knot along its axis. This operation (whose name derives from its resemblance to the operation of "rolling a stocking") is somewhat difficult to describe in totally precise terms, and I will content myself here with referring to Figure II, in [3], where it is shown how to roll a figure-eight knot 4_1.

My objective is to show that roll-spinning is not just twist-spinning in disguise (a state of affairs that one might suspect to be so). Specifically I shall show that a simple roll-spin of 4_1 produces a type of knotted sphere S that cannot be obtained from 4_1 by any twist-spin.

Figure I gives a projection of 4_1 with the meridian elements of its group G indicated by x, a, b, c. From this figure the presentation

$$(x, a, b, c: ab = bx, cb = ac, cx = xb)$$

is read off in the usual way [2], [4]. If we give 4_1 the twist-spin in which 4_1 is rotated about its axis n times the group Γ_n of the resulting sphere (cf. [2], [3]) has presentation

162
which simplifies to

\[(x, c: xcx^{-1}cx = cx^{-1}xc, x^n c = cx^n)\]

The first elementary ideal (cf. [4]) is therefore

\[\gamma_n = (1 - 3t + t^2, 1 - t^n)\].

Figures I . . . V give a sequence of projections of 4_1 that show the successive stages of a simple "rolling." From this we obtain by the same method [2], [3] the following presentation of the group G_1 of the resulting knotted sphere:

\[(x, a, b, c: ab = bx, cb = ac, cx = xb, x^n c = cx^n)\]

\[b^{-1}cb = a, b^{-1}cx^{-1}b = b, b^{-1}ca^{-1}b = c\]
which simplifies to

\[(x, c: cc = x, x^2 = c^3)\].

In this case the first elementary ideal is

\[g_1 = (1 - t + t^2, 2)\].

To show that \(g_1 \neq \gamma_n\), we have only to map the ring of \(L\)-polynomials in \(t\) into the ring of integers of the cyclotomic field \(K(\omega)\), where \(\omega = e^{2\pi i/3}\), by \(t \mapsto \omega\), and note that

\[g_1 \mapsto (2),\]

\[\gamma_n \mapsto (4) \quad \text{if } n \equiv 0 \pmod{3}\]
\[\quad \mapsto (2, 1 - \omega) \quad \text{if } n \equiv 1 \pmod{3}\]
\[\quad \mapsto (2, 1 - \omega^2) \quad \text{if } n \equiv 2 \pmod{3}.\]

To put the above considerations into proper perspective one should consider the space whose elements are the arcs \(k\) in \(R^2\) that span \(R^2\). Then twist- and roll-spinning appear as loops in this "configuration space." Thus we are led to consider relative (2-dimensional) braid groups. From the methodological point of view initiated in [5], this concept generalizes the ordinary (i.e. absolute 1-dimensional) braid groups. Absolute 2-dimensional braid groups were considered in [6], and the relative 2-dimensional braid groups that I have indicated here will be the subject of a more systematic study that C. H. Giffen is undertaking.

BIBLIOGRAPHY

PRINCETON UNIVERSITY