MULTILINEAR LEBESGUE-BOCHNER-STIELTJES INTEGRAL

BY WITOLD M. BOGDANOWICZ

Communicated by A. Zygmund, November 22, 1965

In this paper we introduce an integral of the form \(\int u(f_{ji}, d\mu_j) \) where
\(u \) is a multilinear operator from the product of the Banach spaces
\(Y_{ji}, Z_j \) \((j=1, \ldots, m, i=1, \ldots, k_j) \) into a Banach space \(W \), and
\(f_{ji} \) are Lebesgue-Bochner summable functions, and \(\mu_j \) are vector volumes.

The above integral is a generalization of the integral \(\int u(f, d\mu) \)
developed in [1]. An integral similar to the last integral, developed
in a different way, one can find in Bourbaki [10, Chapter V, p. 48–49]. For applications, see the following paper in this volume.

1. Properties of vector volumes. Let \(R \) be the space of reals and
\(Y_i, Z_i, W \) be seminormed spaces. Denote by \(L(Y_1, \ldots, Y_k; W) \) the
space of all \(k \)-linear continuous operators \(u \) from the space \(Y_1 \times \cdots \times Y_k \) into the space \(W \). The norms of elements in the above spaces
will be denoted by \(|\cdot| \).

The family of sets \(V \) of an abstract space \(X \) will be called a prering
if for any two sets \(A_1, A_2 \in V \) we have \(A_1 \cap A_2 \in V \) and there exists
disjoint sets \(B_1, \ldots, B_k \in V \) such that \(A_1 \setminus A_2 = B_1 \cup \cdots \cup B_k \).

A nonnegative function \(v \) on a prering \(V \) is called a positive volume
or when there is no confusion just volume if it is countably additive,
that is for every countable family of disjoint sets \(A_t \subset V (t \in T) \) such that
\(A = \bigcup_T A_t \in V \) we have \(v(A) = \sum_T v(A_t) \).

A function \(\mu \) from a prering \(V \) into a Banach space \(Z \) is called a
vector volume or simply volume when there is no confusion possible
if the function \(\mu \) is finite additive on \(V \) and for some positive volume \(v \)
we have
\[|\mu(A)| \leq v(A) \]
for all \(A \in V \).

It follows from this definition and from the definition of a prering
that every volume is countably additive.

Theorem 1. Let \(V_i \) be a prering of sets of a space \(X_i \) \((i=1, \ldots, k) \).
Denote by \(V = V_1 \times \cdots \times V_k \) the family of all sets of the form \(A = A_1 \times \cdots \times A_k \) where \(A_i \in V_i \). Then \(V \) is a prering of sets of the
space \(X = X_1 \times \cdots \times X_k \).

\[1 \text{ This work was partially supported by NSF grant GP-2565.} \]
A triple \((X, V, v)\), where \(V\) is a prering of sets of the space \(X\) and \(v\) is a positive volume on the prering \(V\) will be called a volume space.

Theorem 2. Let \((X_i, V_i, v_i)\) \((i = 1, \ldots, k)\) be volume spaces. Then the triple \((X, V, v)\), where \(X = X_1 \times \cdots \times X_k\), \(V = V_1 \times \cdots \times V_k\), and \(v(A) = v_1(A_1) \cdots v_k(A_k)\) for \(A = A_1 \times \cdots \times A_k \in V\), is a volume space. The triple \((X, V, v)\) will be called the product of the volume spaces \((X_i, V_i, v_i)\).

Theorem 3. Let \(V_i\) be a prering of sets of a space \(X_i\) \((i = 1, \ldots, k)\). Let \(v\) be a positive volume on \(V = V_1 \times \cdots \times V_k\) and let \(u(A_1, A_2, \ldots, A_k)\) be a function from the prering \(V\) into a Banach space \(Z\) finite additive with respect to every variable \(A_i\) separately. Then if

\[
|u(A_1, \ldots, A_k)| \leq v(A_1 \times \cdots \times A_k) \quad \text{for all } A_1 \times \cdots \times A_k \in V,
\]

the function \(u\) defined by the formula \(\mu(A_1 \times \cdots \times A_k) = u(A_1, \ldots, A_k)\) is a vector volume on the prering \(V\).

Let \((X, V, v)\) be a fixed volume space. Denote by \(M(v, Z)\) the set of all volumes \(\mu\) from the prering \(V\) into the Banach space \(Z\) such that

\[
|\mu(A)| \leq cv(A) \quad \text{for all } A \in V.
\]

The smallest constant satisfying the last inequality will be denoted by \(\|\mu\|\). It is easy to see that the space \((M(v, Z), \|\|)\) is a Banach space.

Theorem 4. Let \((X, V, v)\) be the product volume space of the volume spaces \((X_i, V_i, v_i)\) \((i = 1, \ldots, k)\). If \(\mu_i \in M(v_i, Z_i)\) for \(i = 1, \ldots, k\) and \(u \in L(Z_1, \ldots, Z_k; W)\) then \(\mu \in M(v, W)\) and \(\|\mu\| \leq \|u\|\|\mu_1\| \cdots \|\mu_k\|\) where \(\mu(A_1 \times \cdots \times A_k) = u(\mu_1(A_1), \ldots, \mu_k(A_k))\) for all \(A \in V\).

The proof of the theorem follows immediately from the previous one.

2. Multilinear integrals and some relations between them.

Lemma 1. Let \((Y_i, |\cdot|_i)\) be a family of seminormed spaces and let \(E_i\) be a dense subspace of the space \(Y_i\) \((i = 1, \ldots, k)\). If \(u\) is a \(k\)-linear operator from \(E_1 \times \cdots \times E_k\) into a Banach space \(W\) and

\[
|u(y_1, \ldots, y_k)| \leq |u| |y_1|_1 \cdots |y_k|_k
\]

for \(y_i \in E_i\) \((i = 1, \ldots, k)\) then the operator \(u\) has a unique extension to a \(k\)-linear operator \(u'\) such that \(|u'(y_1, \ldots, y_k)| \leq |u| |y_1|_1 \cdots |y_k|_k\) for \(y_i \in Y_i\) \((i = 1, \ldots, k)\).

Denote by \(S(Y)\) the family of all functions of the form
\[h = y_1 A_1 + \cdots + y_k A_k, \] where \(A_i \in V \) is a finite family of disjoint sets and \(y_i \in Y \).

In [1] was developed the theory of the space \(L(v, Y) \) of Lebesgue-Bochner summable functions \(f \) generated by a volume space \((X, V, v)\) with values in a Banach space \(Y \). The set \(S(Y) \) according to Lemma 1 and Lemma 4, [1] is linear and dense in the space \(L(v, Y) \).

Let
\[(X_{ji}, V_{ji}, v_{ji}) \quad (j = 1, \ldots, m; i = 1, \ldots, k_j) \]
be a family of volume spaces and let \((X_j, V_j, v_j)\) be the product of the above volume spaces corresponding to a fixed \(j \).

Let \(u \) be a multilinear continuous operator from the product of the Banach spaces \(Y_{ji}, Z_j \) \((j = 1, \ldots, m; i = 1, \ldots, k_j)\) into a Banach space \(W \).

Let \(\mu_j \in M(v_j, Z_j) \) and \(s_{ji} \in S(Y_{ji}) \). Take a representation
\[s_{ji} = \sum_{n_{ji}} y_{n_{ji}} A_{n_{ji}}, \]
where
\[y_{n_{ji}} \in Y_{ji} \quad \text{and} \quad A_{n_{ji}} \in V_{ji} \]
are disjoint sets. Define
\[\int s_{ji}, d\mu_j = \sum_j \sum_i \sum_{n_{ji}} u(y_{n_{ji}}, \mu_j(A_{n_{ji}} \times \cdots \times A_{n_{jk_j}})). \]

It is easy to see that the above operator is well defined, from the product of the spaces \(U, S(Y_{ji}), M(v_j, Z_j) \) \((j = 1, \ldots, m; i = 1, \ldots, k_j)\) into the space \(W \) and
\[\left| \int s_{ji}, d\mu_j \right| \leq |u| \left(\prod_j \|s_{ji}\| \right) \prod_j \|\mu_j\| \]
for all \(u \in U, s_{ji} \in S(Y_{ji}), \mu_j \in M(v_j, Z_j) \).

Using Lemma 1 we can extend the above operator to an operator \(\int u(f_{ji}, d\mu_j) \) defined on the product of the spaces \(U, L(v_{ji}, Y_{ji}), M(v_j, Z_j) \).

Thus we have the following

Theorem 5. The operator \(\int u(f_{ji}, d\mu_j) \) is multilinear from the product of the spaces \(U, L(v_{ji}, Y_{ji}), M(v_j, Z_j) \) \((j = 1, \ldots, m; i = 1, \ldots, k_j)\) into the space \(W \) and
\[\left| \int u(f_{ji}, d\mu_j) \right| \leq |u| \left(\prod_j \|f_{ji}\| \right) \left(\prod_j \|\mu_j\| \right) \]
for all \(u \in U, f_i \in L(v_{ji}, Y_{ji}), \mu_j \in M(v_{ji}, Z_j) \).

Theorem 6. Let \((X, V, v) \) be the product of volume spaces \((X_j, V_j, v_j) \) \((j = 1, \cdots, k)\) and let \(f_i \in L(v_{ji}, Y_{ji}) \). Let \(u \) be a \(k \)-linear continuous operator from the space \(Y_1 \times \cdots \times Y_k \) into \(W \). Then the function \(f \) defined by the formula

\[
 f(x_1, \cdots, x_k) = u(f_1(x_1), \cdots, f_k(x_k))
\]

on the space \(X \) belongs to the space \(L(v, W) \) and

\[
 \|f\| \leq |u| \|f_1\| \cdots \|f_k\|.
\]

Let \((X, V, v) \) be the product of the volume spaces \((X_j, V_j, v_j) \) where \(j = 1, \cdots, k \).

Let \(Y_i, Z \) be Banach spaces. Consider a multilinear operator \(u \) from the space \(Y_1 \times \cdots \times Y_k \times Z \) into a Banach space \(W \). Define a new operator \(u_0 \) from the space \(Y_1 \times \cdots \times Y_k \) into the space \(W_0 = L(Z, W) \) by means of the formula

\[
 u_0(y_1, \cdots, y_k)(z) = u(y_1, \cdots, y_k, z) \text{ for } y_i \in Y_i, z \in Z.
\]

It is easy to see that the operator \(u_0 \) is \(k \)-linear and continuous.

Now if

\[
 f_i \in L(v_{ji}, Y_j)
\]

then according to the previous theorem we have

\[
 f = u_0(f_1, \cdots, f_k) \in L(v, W_0).
\]

Define a new operator \(u_1 \) by means of the formula

\[
 u_1(w, z) = w(z) \text{ for } w \in W_0, z \in Z.
\]

Theorem 7. If \(\mu \in M(v, Z) \) and \(f = u_0(f_1, \cdots, f_k) \), \(u_0, u \) are defined as above then

\[
 \int u(f_1, \cdots, f_k, d\mu) = \int u_1(f, d\mu).
\]

Now let \(Y_j, Z_j \) \((j = 1, \cdots, k)\) be Banach spaces and let \((X, V, v) \) be the product of the volume spaces \((X_j, V_j, v_j) \) \((j = 1, \cdots, k)\). Let

\[
 f_j \in L(v_{ji}, Y_j) \quad \text{and} \quad \mu_j \in M(v_{ji}, Z_j)
\]

Consider a multilinear continuous operator \(u \) from the product of the spaces \(Y_j, Z_j \) \((j = 1, \cdots, k)\) into a Banach space \(W \). Let \(u_0 \) be an operator from the product of the spaces \(Z_j \) \((j = 1, \cdots, k)\) into the space \(W_0 = L(Y_1, \cdots, Y_k; W) \) defined by the formula
for $z_i \in Z_i$, $y_i \in Y_i$.

It is easy to see that the operator u_0 is k-linear and continuous. Thus from Theorem 4 we get

$$\mu = u_0(\mu_1, \cdots, \mu_k) \in M(v, W_0).$$

Let u_1 denote the multilinear continuous operator defined on the space $Y_1 \times \cdots \times Y_k \times W_0$ by means of the formula

$$u_1(y_1, \cdots, y_k, w) = w(y_1, \cdots, y_k) \text{ for } y_j \in Y_j, w \in W_0.$$

We have the following theorem.

Theorem 8. If $f_j \in L(v_j, Y_j)$ and $\mu = u_0(\mu_1, \cdots, \mu_k)$, u_1 are defined as above, then

$$\int u(f_1, \cdots, f_k, d\mu_1, \cdots, d\mu_k) = \int u_1(f_1, \cdots, f_k, d\mu).$$

The last two theorems allow us to reduce any of the integrals to the following form $\int u(f, d\mu)$. In [5] has been shown how one can reduce the integrals to iterated integrals by means of generalized Fubini’s Theorems.

References

