Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Some results giving rates of convergence in the law of large numbers for weighted sums of independent random variables


Authors: W. E. Franck and D. L. Hanson
Journal: Bull. Amer. Math. Soc. 72 (1966), 266-268
DOI: https://doi.org/10.1090/S0002-9904-1966-11488-X
MathSciNet review: 0190977
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Melvin Katz, The probability in the tail of a distribution, Ann. Math. Statist. 34 (1963), 312-318. MR 144369
  • 2. L. E. Baum and Melvin Katz, Convergence rates in the law of large numbers, Bull. Amer. Math. Soc. 69 (1963), 771-772. MR 156373
  • 3. L. E. Baum and Melvin Katz, Convergence rates in the law of large numbers. II, Tech. Rep. No. 75, Dept. of Math., Univ. of New Mexico, Albuquerque, N. M., December 1964. MR 198524
  • 4. William E. Pruitt, Summability of independent random variables, J. Math. Mech. (to appear). MR 195135
  • 5. P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286-291. MR 30714


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1966-11488-X

American Mathematical Society