1. **Introduction.** J. Tate [8] has introduced a theory of cohomological dimension for fields using the étale Grothendieck (=Galois) cohomology. In recent work, M. Artin has extended these methods to produce a dimension theory for noetherian preschemes. On the other hand, the author [5] has used the flat Grothendieck cohomology over a field to study certain duality questions (see also [7], [9] for the étale case); so it is natural to ask whether there exists a dimension theory based on the flat cohomology. We shall show that the answer is, in general, no. Full proofs will appear in [6].

2. **Terminology.** A Grothendieck topology is a pair consisting of a category Cat_T and a set Cov_T of families of morphisms of Cat_T. They are subjected to the axioms:

1. If ϕ is an isomorphism, $\{\phi\} \in \text{Cov}_T$.
2. If $\{U_i \rightarrow U\} \subseteq \text{Cov}_T$ and $\{V_i \rightarrow U_i\} \subseteq \text{Cov}_T$, for all i, then $\{V_i \rightarrow U\} \subseteq \text{Cov}_T$.
3. If $\{U_i \rightarrow U\} \subseteq \text{Cov}_T$ and $V \rightarrow U$ is arbitrary, then $U_i \times_V V$ exists for each i, and $\{U_i \times_V V \rightarrow V\} \subseteq \text{Cov}_T$.

A presheaf (of abelian groups) on T is a contravariant functor from Cat_T to the category of abelian groups, while a sheaf, F, is a presheaf which satisfies the axiom

$$(S) \quad F(U) \rightarrow \prod_i F(U_i) \Rightarrow \prod_{i,j} F(U_i \times_V U_j)$$

is exact (i.e., $F(U)$ is mapped bijectively onto the set of all $x \in \prod_i F(U_i)$ whose images by the two maps shown agree in $\prod_{i,j} F(U_i \times_V U_j)$.) Roughly speaking, all that is done in Godement's book [2] for classical sheaf theory may be done in this general setting [1]. If X is a prescheme [3, Vol. I, p. 97], we let Cat_T be the category of all preschemes Y which are separated, finitely presented, flat, and quasi-finite over X [3, Vol. I, p. 135, p. 144; Vol. IV, p. 5; Vol. II, p. 115]. Cov_T consists of arbitrary families of flat morphisms whose disjoint sum is faithfully flat [3, Vol. IV, Part 2, p. 9]. It is known that these

1 Supported in part by the National Science Foundation.
data define a Grothendieck topology, which we call the flat topology on X.

3. Main results.

Theorem 1. Let $X = \text{Spec } A$, with A a complete, noetherian local ring of characteristic $p > 0$. Unless A is a perfect field, we have $\text{c.d.}_p X = \infty$; that is, for every integer $n \geq 0$, there exists a torsion sheaf F_n in the flat topology on X such that the p-primary component of $H^n(X, F_n)$ is not zero. Moreover, if the residue field of A is separably closed, then the sheaves F_n (for $n > 0$) may be chosen so that

\[H^r(X, F_n) = \begin{cases} 0 & r \neq 0, r \neq n \\ A^+/A^{+r} & \end{cases} \]

Corollary. Let k be a field of characteristic $p > 0$. Then the following statements are equivalent:

1. k is perfect,
2. $\text{c.d.}_p k \leq 1$,
3. $\text{c.d.}_p k$ is finite,
4. $\text{c.d.}_p k = 0$,
5. $\text{c.d.}_p k$ is finite.

Theorem 2. Let k be a field of characteristic $p > 0$. Let G be a commutative group scheme \([3, \text{Vol. II, p. 166}], [5, \text{p. 412}]\) of finite type over k. Then for every $r > 2$ we have $H^r(k, G; p) = (0)$. (Here, $H^r(X, F; p)$ denotes the p-primary component of the group $H^r(X, F)$.) Consequently, by restricting the coefficient category to those sheaves which are representable (or their limits) we may bound the p-dimension of the field k by 2.

4. Sketch of proofs. Over a complete local ring, one may replace quasi-finite by finite with no change in the dimension theory. Every finite algebra over A is a complete semilocal ring, hence a direct product of complete local rings. Thus every object of $\text{Cat } T$ is uniquely a sum of connected schemes and all constructions and verifications may be restricted to the connected objects of $\text{Cat } T$. In the case of separably closed residue field, for each abelian group α and each sheaf of sets F over X, we define a presheaf α_F by

\[\alpha_F(U) = \prod_{F(U)} \alpha, \quad U \text{ connected} \]

where $\prod_{F(U)} \alpha$ means the direct sum of copies of α indexed by the set $F(U)$, and we extend the definition of α_F in the usual way to the nonconnected objects of $\text{Cat } T$.

That is, a sheaf whose values lie in torsion abelian groups.
LEMMA. Let A be as in Theorem 1 with separably closed residue field. Then the presheaves $\mathcal{G}_\mathcal{F}$ are sheaves and for every object U and covering V of U in $\text{Cat} T$,

\[(**)
H^r(V/U, \mathcal{G}_\mathcal{F}) = (0) \quad \text{for } r > 0.
\]

From equation (**) one deduces that $H^r(U, \mathcal{G}_\mathcal{F}) = (0)$ for every $r > 0$ and every object U of $\text{Cat} T$. If $F_1 = a_p$, where a_p is the kernel of the Frobenius map on the additive group scheme G_a, then F_1 satisfies equation (*). The exact sequence

$$0 \to F_2 \to (\mathbb{Z}/p\mathbb{Z})F_1 \to F_1 \to 0$$

and the above lemma, show that F_2 satisfies equation (*). One now proceeds by induction using the lemma and the exact sequence

$$0 \to F_{n+1} \to (\mathbb{Z}/p\mathbb{Z})F_n \to F_n \to 0.$$

For the general case, one analyzes the Leray spectral sequence [1]

$$H^*(X, R^r\pi_*F) \Rightarrow H^*(X, F)$$

(where $X_s = \text{Spec } A \otimes_k k_s$, $k = \text{residue field of } A$, $k_s = \text{separable closure of } k$).

The Corollary follows immediately from the theorem if one uses the Hochschild-Serre spectral sequence [1, p. 92] as applied to Grothendieck cohomology.

Theorem 2 is proved by reducing it to a question concerning artinian group schemes [5, pp. 412–413]. This is done via a structure theorem for the category of sheaves over k, and results of Tate. The conclusion is: in order to prove Theorem 2 it suffices to prove it for the kernel G_n of the nth iterate of the Frobenius map on G. In this case, we make use of the Hochschild-Serre spectral sequence and the structure of a composition series for G_n over k_s to reduce the theorem to two assertions

(i) $H^r(k_s, a_p) = (0)$ for $r > 1$,

(ii) $H^r(k_s, u_p) = (0)$ for $r > 1$.

Here u_p is the kernel of the Frobenius map on the multiplicative group scheme G_m. Assertion (i) is known from [4, p. 21], [5, Proposition 3], and assertion (ii) follows because one can prove

$$H^r(k_s, G_m) = (0) \quad \text{for } r > 0.$$

REFERENCES

University of Pennsylvania