AN INEQUALITY CONCERNING MEASURES

BY ROBERT P. KAUFMAN AND NEIL W. RICKERT

Communicated by G. A. Hedlund, February 17, 1966

If \(\mu \) is a complex measure (countably additive on a \(\sigma \)-field of sub­­sets of some space), it is obvious that there is a measurable set \(E \) such that

\[
| \mu(E) | \geq \frac{1}{4} \| \mu \|
\]

where \(\| \mu \| \) denotes the total variation of \(\mu \). In fact a set \(E \) can be found for which

\[
| \mu(E) | \geq \frac{1}{\pi} \| \mu \|.
\]

We shall give a simple proof of this. If \(\mu \) is a vector valued measure with values in \(\mathbb{R}^n \) (with the usual Euclidean norm) we shall show by a suitable modification of our argument that there is a set \(E \) with

\[
\| \mu(E) \| \geq \frac{1}{2\pi^{1/2}} \frac{\Gamma(n/2)}{\Gamma((n + 1)/2)} \| \mu \|.
\]

Asymptotically this is \(\| \mu \|/(2\pi n)^{1/2} \), which is much better than the obvious \(\| \mu \|/2\pi n \).

Theorem 1. Let \(\mu \) be a complex valued measure of total variation 1. Then there is a measurable set \(E \) such that

\[
| \mu(E) | \geq 1/\pi.
\]

Proof. Consider first the special case where \(\mu \) is a Borel measure on the unit circle of the complex plane (which we identify with the real line (mod 2\(\pi \))), and is such that for every measurable set \(E \),

\[
\mu(E) = \int_E e^{i\theta} \mu(\theta) \, d\theta
\]

where \(\mu(E) \) denotes the total variation of \(\mu \) on the set \(E \). Then

1 Partially supported under grant NSF-GP-5493.
AN INEQUALITY CONCERNING MEASURES

\[
\max_{E \text{ measurable}} |\mu(E)| = \max_{E \text{ measurable}} \left| \int e^{i\theta} |\mu| (d\theta) \right|
\]

\[
\geq \max_{\lambda} \left| \int_{\lambda - \pi/2}^{\lambda + \pi/2} e^{i\theta} |\mu| (d\theta) \right| = \max_{\lambda} \left| \int_{\lambda - \pi/2}^{\lambda + \pi/2} e^{i(\theta - \lambda)} |\mu| (d\theta) \right|
\]

\[
\geq \max_{\lambda} \int_{\lambda - \pi/2}^{\lambda + \pi/2} \Re(e^{i(\theta - \lambda)}) |\mu| (d\theta)
\]

\[
\geq \frac{1}{2\pi} \int_{0}^{2\pi} \int_{\lambda - \pi/2}^{\lambda + \pi/2} \Re(e^{i(\theta - \lambda)}) |\mu| (d\theta) d\lambda
\]

\[
= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{\lambda - \pi/2}^{\lambda + \pi/2} \Re(e^{i(\theta - \lambda)}) d\lambda |\mu| (d\theta) = \frac{1}{\pi}.
\]

For the general case define \(f \) to be the Radon-Nikodym derivative \(f = d\mu/d|\mu| \), and define \(\nu(E) = \mu(f^{-1}(E)) \) for \(E \) a Borel subset of the unit circle. The proof is easily completed by application of the special case to the measure \(\nu \).

The constant \(1/\pi \) is best possible; for some measures \(\mu \) there is no set \(E \) with \(|\mu(E)| > 1/\pi \). We shall now determine these measures.

Theorem 2. Let \(\mu \) be a complex valued measure with \(||\mu|| = 1 \), and \(f \) the Radon-Nikodym derivative \(d\mu/d|\mu| \). Then a necessary and sufficient condition that there be no measurable set \(E \) with \(|\mu(E)| > 1/\pi \) is that

\[
\int f(t)^n |\mu| (dt) = 0
\]

for \(n = \pm 1, \pm 2, \pm 4, \pm 6, \pm 8, \pm \cdots \).

Proof. Define \(F_{\lambda} = \{ t; \lambda - \pi/2 \leq \arg f(t) \leq \lambda + (\pi/2) (\text{mod } 2\pi) \} \).

If \(E \) is any measurable set, \(\mu(E) = re^{i\lambda} \) for some choice of real numbers \(r > 0 \) and \(\lambda \); it is then easily checked that \(\Re(e^{-i\lambda} \mu(F_\lambda)) \geq r \). Thus \(|\mu(E)| \leq 1/\pi \) for all measurable sets \(E \) if and only if \(\Re(e^{-i\lambda} \mu(F_\lambda)) \leq 1/\pi \) for all real \(\lambda \). As in the proof of Theorem 1, we observe that \(f \) induces a measure \(\nu \) on the unit circle such that \(\nu(S) = \mu(f^{-1}(S)) \) for each measurable set \(S \) of the unit circle. Then

\[
\Re(e^{-i\lambda} \mu(F_\lambda)) = \int_{\lambda - \pi/2}^{\lambda + \pi/2} \Re(e^{i(\theta - \lambda)}) |\nu| (d\theta).
\]

But this is a continuous function of \(\lambda \) whose mean for \(0 \leq \lambda \leq 2\pi \) was shown in the proof of Theorem 1 to be \(1/\pi \). Thus it never exceeds \(1/\pi \) in value if and only if it is constant and a continuous function on the interval \([0, 2\pi] \) is constant if and only if its nonzero
Fourier coefficients vanish. Moreover we may interpret the function $\text{Re}(e^{-i\lambda F_0})$ as the convolution of the measure $|\nu|$ with the function defined to be $\text{Re}(e^{i\lambda})$ for $-\pi/2 \leq \lambda \leq \pi/2$, and zero elsewhere on the interval $[-\pi, \pi]$, and then extended to a periodic function. With this interpretation we see that $\text{Re}(e^{-i\lambda F_0})$ has vanishing nonzero Fourier coefficients if and only if the nth Fourier-Stieltjes coefficient of the measure $|\nu|$ vanishes for $n = \pm 1, \pm 2, \pm 4, \pm 6, \ldots$. But the nth Fourier-Stieltjes coefficient of $|\nu|$ is

$$\int_{0}^{2\pi} e^{in\theta} |\nu| (d\theta) = \int f(t)^n |\mu| (dt).$$

The proof is thus complete. A final remark: the vanishing of the nth Fourier-Stieltjes coefficients of $|\nu|$ for n even, $n \neq 0$, means

$$\frac{1}{2}(|\nu| (d\theta) + |\nu| (d(\pi + \theta))) = d\theta/2\pi,$$

and thus implies that $|\nu|$ is absolutely continuous with respect to Lebesgue measure.

Professor S. Kakutani has suggested the following geometric proof of Theorem 1. The condition that $||\mu|| = 1$ is equivalent to the condition that the convex hull of the range of F_0 have perimeter 2, a fact which is easily seen for a finite measure space and easily deduced from this for a general measure space. (If μ is completely nonatomic its range is already a convex set, by a theorem of Liapunoff, see [2]). We thus consider the following isoperimetric problem; “Of all convex sets of perimeter 2, which one is contained in the smallest disk with centre 0?” It is easily seen that the answer is the disk of radius $1/\pi$, and from this fact Theorem 1 follows.

If F_0 is merely a finitely additive set function (complex valued of total variation 1) it is easily deduced from Theorem 1 (for finite measure spaces) that for any $\epsilon > 0$ there is a measurable set E with

$$\mu(E) \geq 1/\pi - \epsilon.$$

It may be asked how the constant $1/\pi$ must be changed if instead of the usual Euclidean distance, the plane is given a different norm $||\cdot||$. Using the approach of Professor Kakutani it is not difficult to show that the constant becomes $2/s$, where s is the perimeter of the unit ball $\{x; ||x|| \leq 1\}$, s being measured with the distance function obtained from the norm $||\cdot||$. This perimeter is smallest when the unit ball is a regular hexagon: in this case the perimeter is 6.
We now consider the vector valued case.

Theorem 3. Let \(\nu \) be a measure with values in \(\mathbb{R}^n \) and such that \(\|\nu\| = 1 \). Then there is a measurable set \(E \) with

\[
\|\nu(E)\| \geq \left(\frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n+1}{2} \right)} \right) / \left(2\pi^{n/2} \right).
\]

Proof. We introduce the following notation. Denote by \(S \) the unit sphere in \(\mathbb{R}^n \), and by \(S^+ \) the set \(\{ x; x \in S, x_1 \geq 0 \} \) (\(x_1 \) being the first co-ordinate of \(x \)). Denote by \(m \) the usual spherical mean on \(S \); that is the uniformly distributed measure on \(S \) with \(m(S) = 1 \). Let \(G \) denote the orthogonal group acting in \(\mathbb{R}^n \). Let \(x_0 \) be the point \((1, 0, 0, \ldots, 0)\) of \(S \) and let \(K \) be the group of those elements of \(G \) which fix \(x_0 \). We shall use the notation \(m_k \) for Haar measure on \(K \), and \(m_G \) for the Haar measure on \(G \) (with the usual normalization for compact groups). For each positive measure \(\mu \) on \(S \) define a positive measure \(\bar{\mu} \) on \(G \) as follows: if \(f \) is a continuous function on \(G \) define \(f \) on \(S \) by

\[
f(gx_0) = \int_K f(gk)m_k(\,dk) \]

and define \(\bar{\mu} \) to be that measure on \(G \) such that for any continuous function \(f \) on \(G \)

\[
\int_G f(g)\bar{\mu}(\,dg) = \int_S f(x)\mu(\,dx).
\]

It is obvious that \(\bar{m} = m_G \), and that for any continuous function \(h \) on \(S \),

\[
\int_S h(x)\mu(\,dx) = \int_G h(gx_0)\bar{\mu}(\,dg).
\]

Finally, denote by \(\phi \) the continuous function on \(S \) defined by \(\phi(x) = \max(x_1, 0) \). As in the proof of Theorem 1 there is no loss of generality in assuming that the measure \(\nu \) is a Borel measure on \(S \) such that

\[
\nu(E) = \int_E x\mu(\,dx)
\]

for each measurable set \(E \), where \(\mu \) is a probability measure on \(S \). But then
max \[\int_E x\mu(dx) \leq \max_{\varphi \in \mathcal{G}} \left(\int_{\varphi^{-1}S^+} \varphi(x)\mu(dx) \right) \]

\[= \max_{\varphi \in \mathcal{G}} \left(\int_{\varphi^{-1}S^+} \varphi(x)\mu(dx) \right) \]

\[\geq \max_{\varphi \in \mathcal{G}} \int_{\varphi^{-1}S^+} (gx)^\mu(dx) = \max_{\varphi \in \mathcal{G}} \int_{\varphi^{-1}S^+} \phi(gx)\mu(dx) \]

\[= \max_{\varphi \in \mathcal{G}} \int_S \phi(gx)\mu(dx) = \max_{\varphi \in \mathcal{G}} \int_S \phi(gg'x_0)\mu(dg') \]

\[\geq \int_S \int_S \phi(gg'x_0)\mu(dg')m_\mathcal{G}(dg) = \int_S \int_S \phi(gg'x_0)m_\mathcal{G}(dg)\mu(dg') \]

\[= \int_S \int_S \phi(gx_0)m_\mathcal{G}(dg)\mu(dg') = \int_S \phi(gx_0)m_\mathcal{G}(dg) \]

\[= \int_S \phi(x)m(dx) = \int_{S^+} x_1m(dx) = \frac{1}{2\pi^{1/2}} \frac{\Gamma(n/2)}{\Gamma((n+1)/2)}. \]

As in Theorem 1 this is best possible, as the case \(\mu = m \) demonstrates. After the obvious modification the discussion after Theorem 2 on the case of finitely additive set functions is applicable once again.

There seems to be no satisfactory geometric proof of Theorem 3 analogous to the one suggested by Professor Kakutani for Theorem 1. However the condition \(\|v\| = 1 \) can be stated geometrically in terms of the convex hull of the range of \(v \). It is known that if \(K \) is any compact convex set, and if \(B \) denotes the unit ball of \(R^n \), then the volume of \(K + rB \) is a polynomial in \(r \) of degree \(n \) (see [1]). If \(K \) is the convex hull of the range of the vector valued measure \(\nu \), then the condition that \(\|v\| = 1 \) is equivalent to the coefficient of \(r^{n-1} \) in the polynomial \(\text{vol}(K + rB) \) being equal to the \(n-1 \) dimensional volume of the unit ball in \(R^n \).

References

University of Illinois and
Yale University