TWO THEOREMS IN GEOMETRIC
MEASURE THEORY

BY HERBERT FEDERER

Communicated by J. Wermer, February 8, 1966

The following two propositions give some new information about
the structure of differentiable maps. We use the symbols \(\mathbb{R}^m \) and \(H^s \)
to designate \(m \) dimensional Euclidean space and \(s \) dimensional Hausdorff measure, respectively.

THEOREM 1. If \(m > r \geq 0 \) and \(k \geq 1 \) are integers, \(Y \) is a normed real
vectorspace, \(f: \mathbb{R}^m \to Y \) is \(k \) times continuously differentiable, and

\[
S = \mathbb{R}^m \cap \{ x : \text{dim im } Df(x) \leq r \},
\]

then

\[
H^{r+(m-r)/k}[f(S)] = 0.
\]

THEOREM 2. If \(f: \mathbb{R}^m \to \mathbb{R}^n \) is Lipschitzian, \(r \) is an integer, \(0 \leq r \leq m \),
and

\[
T = \mathbb{R}^n \cap \{ y : H^{m-r}(f^{-1}\{y\}) > 0 \},
\]

then \(H^r \) almost all of \(T \) can be covered by a countable family of \(r \) di­
mensional submanifolds of class 1 of \(\mathbb{R}^n \).

The first theorem optimally sharpens the results of [4], where the
history of the problem is discussed; its proof uses a refinement of the
key lemma in [3], which dealt with the case \(r = 0 \). The second theo­
rem is related to the coarea formulae obtained in [2] and [1]. Proofs
of both theorems will appear in the author's book *Geometric measure
theory*.

REFERENCES

Brown University

1 This work was supported in part by a research grant from the National Science Foundation.