COBORDISM OF GROUP ACTIONS

BY ARTHUR WASSERMAN¹

Communicated by R. Palais, May 9, 1966

Let G be a compact Lie group and M a compact G manifold without boundary, i.e. a C^∞ manifold with a differentiable action of G on M. M^n is said to be G-cobordant to zero $M \sim_0 0$ if there exists a compact G manifold Q^{n+1} with $\partial Q = M$. Note that in this case M_σ (the fixed point set of M) = ∂Q_σ. M_σ and Q_σ are both disjoint unions of closed submanifolds (of varying dimension) of M, Q respectively.

Let $\nu(M, Q)$ denote the normal bundle of M_σ in M; $\nu(M_\sigma, M) \to M_\sigma$ is a G-vector bundle in the sense of [5]. A partial converse to the statement $\nu(M_\sigma, M) = \partial Q_\sigma$ is given by

PROPOSITION 1 ([2, p. 10]). If $\nu(M_\sigma, M)$ is cobordant to zero as a G-vector bundle, i.e. if there exists a manifold W and a G-vector bundle $E \to W$ with $\partial W = M_\sigma$, $E | \partial W = \nu(M_\sigma, M)$ then M is G-cobordant to a manifold M' with $M'_\sigma \equiv \emptyset$.

PROOF. Form the manifold $M \times I \cup_f E(1)$ where $E(1)$ denotes the unit disc bundle in E and

$$f: E(1) \mid \partial W = \nu(M_\sigma, M) \xrightarrow{\exp_{\text{fix}}} M \times 1.$$

Then note that, after smoothing,

$$\partial(M \times I \cup_f E(1)) = M \times 0 \cup (M \times 1 - f(E(1) \mid \partial W)) \cup \partial E(1)$$

$$= M \times 0 \cup M'.$$

Hence, one may view the G-cobordism class of $\nu(M_\sigma, M)$ as a first obstruction to finding a cobordism $M \sim_0 0$. Higher obstructions are formulated in terms of a spectral sequence. For simplicity we deal only with the unoriented case.

Let V be an orthogonal representation of G and let V^n denote the n-fold direct sum of V with itself and $S(V)$ the unit sphere in V. Consider the category of manifolds $\mathcal{S}(V)$ where M is in $\mathcal{S}(V)$ iff M can be imbedded in $S(V^n)$ for some n. One can then define the cobordism groups $\pi_n(V) = \pi_n(\mathcal{S}(V))$ of n dimensional G-manifolds in $\mathcal{S}(V)$ (see [5]). It was shown in [5] that if G is finite or abelian then $\pi_n(V) \cong \pi_1^{g_{2n+3}}(T_k(V^{2n+3} \oplus R), \infty)$ where $\pi_1^{g_{2n+3}}(T_k(V^{2n+3} \oplus R), \infty)$ de-

¹ This research was supported in part by the U. S. Army Office of Research, (Durham).
notes the equivariant homotopy classes of maps of \(S(V^{2n+3} \oplus R) \) into \(T_k(V^{2n+3} \oplus R) \) the Thom space of the universal bundle of \(k \)-planes in \(V^{2n+3} \oplus R \). Let \(f \) be such a map; then proposition 1 may be reinterpreted as saying

Proposition 1'. Any homotopy of

\[
f | S(V^{2n+3} \oplus R)_G : S(V^{2n+3} \oplus R)_G \to T_k(V^{2n+3} \oplus R)_G
\]

may be covered by a homotopy of \(f \).

It was shown in [5] that there are only a finite number of conjugacy classes of isotropy groups occurring in \(G(V) \); let \((H_1), \cdots, (H_r) \) denote the conjugacy classes ordered by \((H_i) < (H_j) \) iff there is a \(g \in G \) with \(gH_ig^{-1} \subset H_j \) but \(gH_ig^{-1} \neq H_j \). Define the level \(H_i > n \) if \(H_i < H_j \) and level \(H_i > n - 1 \); level \(G = 0 \) by definition and level \(H_i = n \) if level \(H_i > n - 1 \) but not level \(H_i > n \). We may filter \(G(V) \) by subcategories \(G^i(V) \) where \(M \) is in \(G^i(V) \) if for each \(x \in M \) level \((G_x) \geq i \) and \(G_x \) is the isotropy group of \(x \). One then has the corresponding cobordism groups \(D_{n,i} = \Xi_{n_i}(G^i(V)) \). Let \(D_{n,0} = D_{n,0} \) for \(i \leq 0 \) and let \(D^{n,i} \) denote the image of \(D_{n,i} \) in \(D_{n,0} = \Xi_{n_i}(V) \). We define \(E_{n,i} = 0 \) for \(i < 0 \). Vector bundles with fibre dimension zero are included.

Theorem. There is a graded exact couple

\[
\begin{align*}
D & \xrightarrow{\partial} D \\
\partial & \downarrow _\nu \quad \Downarrow \\
E & \xrightarrow{\nu}
\end{align*}
\]

where

\[
D = \sum_{n,i} D_{n,i}, \quad E = \sum_{n,i} E_{n,i}
\]

\(\text{with} \)

\[
E_{n,i} = E_{n,i} = D^{n,i} / D^{n,i+1}.
\]
In particular

\[\mathfrak{N}_n(V) \approx \sum_{i=0}^{\infty} E_{n,i}^\infty. \]

The maps are as follows: Define \(w: D_{n,i} \to D_{n,i-1} \) by \(w([M]) = [M] \); if \(M \) is in \(\mathcal{G}^i(V) \) then \(M \) is in \(\mathcal{G}^{i-1}(V) \). Define \(\partial: E_{n,i} \to D_{n-1,i+1} \) by \(\partial(E \to M) = S(E) \); \(\partial \) is well defined by (i), (ii), and (iii). Define \(\nu: D_{n,i} \to E_{n,i} \) by \(\nu([M]) = [\nu(M_i, M)] \) where \(M_i = \{ x \in M \mid \text{level } (G_x) = i \} \); \(M_i \) is a closed submanifold since \(M \) is in \(\mathcal{G}^i(V) \). Conditions (i)–(iv) are clearly satisfied. Exactness follows from straightforward geometric arguments.

The groups \(E_{n,i} \) may be described as follows: let \(H \) be an isotropy group on level \(i \) and let \(W \) be an \(r \) dimensional representation of \(H \) with \(W \subseteq V^*|H \) for some \(s \) where \(V^*|H \) means \(V^* \) considered as an \(H \) space.

Let \(P(H, W) \) be the group of \(N(H) \) (normalizer of \(H \) in \(G \)) equivariant bundle maps of \(W \times H \) into itself which are diffeomorphisms on the base space \(N(H)/H \). We have the exact sequence \(0 \to O_H(W) \to P(H, W) \to N(H)/H \to 0 \) where \(O_H(W) \) is the group of \(H \) equivariant orthogonal transformations of \(W \).

Proposition 2. \(E_{n,i} \) is isomorphic to the direct sum of \(\mathfrak{N}_i(BP(H, W)) \) over all such representations of \(H \) and all conjugacy classes of subgroups on level \(i \); \(\mathfrak{N}_i(BP(H, W)) \) denotes the ordinary cobordism group (see [1, p. 45]) of the classifying space of \(P(H, W) \) and \(t = n - \dim W - \dim G/H \).

Proof. Let \(E \to M \) be a bundle in \(E_{n,i} \) with \((G_x) = (H) \) for all \(x \in M \). By equivariance, it suffices to consider the \(N(H) \) bundle \(E \mid M_H \to M_H(M_H = \{ x \in M \mid G_x = H \}) \) since \(M = M_H \times_{N(H)} G \) ([3, p. 42]); but \(M_H \) is a \(N(H)/H \) principal bundle over \(M/G \) and hence one can see that \(E \mid M_H \to M_H \to M/G \) is an \(N(H) \) fibre bundle with fibre \(N(H) \times_H W \) and structural group \(P(H, W) \) ([4, p. 40]). Any element of \(E_{n,i} \) is the disjoint union of such bundles.

To describe the differential we let \(K \subseteq H \) be an isotropy group on level \(i+1 \); then \(W \mid K = W_0 \oplus W_1 \) where \(K \) operates trivially on \(W_0 \). \(S(W_0) \) is a \(N(K, H)/K \) principal bundle where \(N(K, H) \) denotes the normalizer of \(K \) in \(H \). Form the \(N(H) \) bundle \(U \) over \(BP(H, W) \) with fibre \(N(H) \times_H S(W) \), \(U = E_P \times_{P} (N(H) \times_H S(W)) \) where \(E_P \to BP(H, W) \) is the universal principal bundle; then \(U(K)/N(H) = U(K) \) is a bundle over \(BP(H, W) \) with fibre \(S(W_0)/N(K, H) \) and there is a map \(i: U(K) \to BP(K, W_1) \) which classifies the normal
bundle of $U(K)$ in U. Then for any $[M, f] \in \Xi_{i}(BP(H, W))$ we have the diagram

$$
\begin{array}{ccc}
\pi_{*}U(K) & \xrightarrow{f*} & U(K) \\
\downarrow & & \downarrow \\
M & \xrightarrow{f} & BP(H, W).
\end{array}
$$

Clearly $d([M, f]) = \sum [f*U(K), \iota \circ f_*] \in E_{n-1,i+1}$ where $[f*U(K), \iota \circ f_*] \in \Xi_{s}(BP(K, W_1)$, $s=n-1-\dim W_1-\dim G/K$, and the sum extends over all conjugacy classes (K) on level $i+1$ with $K \subset H$.

References

Harvard University