Consider the following two conjectures:

\(C(n) \): (The combinatorial Schoenflies conjecture.) A combinatorial \((n - 1)\)-sphere on a combinatorial \(n\)-sphere decomposes the latter into two combinatorial \(n\)-cells.

\(D(n) \): Let \(W^n \) be an orientable combinatorial manifold without boundary and let \(M^{n-1} \) be a closed orientable combinatorial manifold imbedded piecewise linearly in \(W^n \). Let \(U \) be a regular neighborhood of \(M^{n-1} \) in \(W^n \). Then there exists a piecewise linear homeomorphism \(h: M^{n-1} \times [-1; 1] \rightarrow U \) such that

\(h(x, 0) = x, \)

\(h \) is onto.

It is easily seen that \(D(n) \) implies \(C(n) \) for all \(n \neq 4 \) by using the Hauptvermutung for combinatorial cells and spheres [10]. In [8], Noguchi shows that \(C(1), C(2), \ldots, C(n) \) imply \(D(n+1) \). By using the fact that a compact component of the boundary of a combinatorial manifold is combinatorially collared [9], [11], it is easily shown that \(C(n) \) implies \(D(n+1) \). However it is possible to prove a weaker version of \(D(n+1) \) without the use of \(C(n) \) for the special case when \(W, M \) are spheres.

Theorem. Let \(\sum^n \) \((n \neq 4) \) be a combinatorial sphere embedded piecewise linearly in the combinatorial sphere \(S^{n+1} \). Let \(U \) be a regular neighborhood of \(\sum^n \) in \(S^{n+1} \). Then there exists a piecewise linear homeomorphism \(h: \sum^n \times [-1; 1] \rightarrow S^{n+1} \) such that \(h(\sum^n \times [-1; 1]) = U \).

Proof. (For definitions of terms used see [11].) Since \(C(i), i = 1, 2, 3, \) is valid [1], [6], it follows from the remarks above that the theorem is true for \(n < 4 \). Suppose \(n > 4 \).

Since \(\sum^n \) is a deformation retract of \(U \), the \(i \)th integral homology groups of \(\sum^n \) and \(U \) are isomorphic for all \(i \). It follows then from Alexander duality and the unicoherence of the sphere that the closure of \(S^{n+1} - U \), \(\text{Cl}(S^{n+1} - U) \), is the union of two connected closed sets,

1 The contents of this paper form a part of the author's dissertation submitted as a partial requirement for the Ph.D degree at Florida State University under the direction of Professor James J. Andrews. Research was supported by a National Science Foundation Cooperative Graduate Fellowship.
D_1, D_2 with a connected boundary T_1, T_2 respectively. Since U is a combinatorial manifold, from [2], we have that each D_i is a combinatorial manifold. Similarly, $S^{n+1} - \sum^n = R_1 \cup R_2$ where $D_i \subset R_i$ and $\text{Cl} \, R_1 \cap \text{Cl} \, R_2 = \sum^n$. By either [3] or [7], $\text{Cl} \, R_1$ and $\text{Cl} \, R_2$ are topological $(n+1)$-cells.

We want to show that each T_i is simply connected. Let $f: S^1 \to T_1$ be a continuous map of the 1-sphere into T_1. By the simplicial approximation theorem, we may assume f is piecewise linear. Since U is simply connected (for it is of the same homotopy type as \sum^n), $f(S^1)$ bounds a disk N in U. We may assume N is polyhedral and in general position with respect to \sum^n. Then if $N \cap \sum^n \neq \emptyset$, $N \cap \sum^n$ is a finite collection of simple closed curves. Since \sum^n is simply connected, we can suppose that N lies in $U \cap \text{Cl} \, R_1$; for by the usual alteration techniques, see, for example, [4], we can replace N by a disk which is bounded by $f(S^1)$ and lies in $U \cap \text{Cl} \, R_1$. By using the collar of the boundary of $\text{Cl} \, R_i$, we can assume that $N \cap \sum^n = (T_1 \cup T_2) \times [0, 1)$. Since $U - \sum^n = (T_1 \cup T_2) \times [0, 1)$, we can then push N into T_1.

Since $D_i \cup U \setminus \text{Cl} \, R_i$, $i = 1, 2$, it follows that each $D_i \cup U$ is contractible and hence from the fact that each T_i is bicollared and from duality, each D_i has homology groups of a point. Since each T_i is simply connected it follows from a similar argument as above that each D_i is simply-connected. From the Hurewicz Isomorphism Theorem, it follows that each D_i is contractible. Hence from [10], we have that each D_i is a combinatorial $(n+1)$-cell. From [2], each $\text{Cl}(S^{n+1} - D_i)$ is a combinatorial $(n+1)$-cell. Then $U = \text{Cl}(\text{Cl}(S^{n+1} - D_i) - D_2)$ is piecewise linear homeomorphic to $\sum^n \times [-1; 1]$ [11].

REMARKS. Attempts to prove the above theorem for manifolds not spheres by the techniques of Noguchi fail because of the missing dimension $n = 4$. From [5], it follows that $T_1 \times (0; 1)$ is topologically homeomorphic to $S^n \times (0; 1)$, but otherwise it is unknown to the author whether T_1 is a topological 4-sphere in the case $n = 4$.

REFERENCES

FLORIDA STATE UNIVERSITY