Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

On a system of nonlinear partial differential equations arising in mathematical economics


Authors: Melvyn S. Berger and Norman G. Meyers
Journal: Bull. Amer. Math. Soc. 72 (1966), 954-958
MathSciNet review: 0203231
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Caspar Goffman, Non-parametric surfaces given by linearly continuous functions, Acta Math. 103 (1960), 269–291. MR 0116090
  • 2. Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
  • 3. I. N. Herstein and John Milnor, An axiomatic approach to measurable utility, Econometrica 21 (1953), 291–297. MR 0061356
  • 4. L. Hurwicz and H. Uzawa, The integrability conditions for demand functions, (to appear).
  • 5. W. Nikliborc, Sur les équations aux differentiables totales, Studia Math. 1 (1929), 41-49.
  • 6. Paul A. Samuelson, The problem of integrability in utility theory, Economica N.S. 17 (1950), 355–385. MR 0043436
  • 7. J. Serrin, Theory of differentiation, (Mimeographed Lecture Notes), University of Minnesota, Minneapolis, Minn.
  • 8. Tracy Yerkes Thomas, Systems of total differential equations defined over simply connected domains, Ann. of Math. (2) 35 (1934), no. 4, 730–734. MR 1503190, 10.2307/1968488
  • 9. Masatsugu Tsuji, On a system of total differential equations, Jap. J. Math. 19 (1948), 383–393. MR 0032889
  • 10. John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944. MR 0011937


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1966-11600-2