Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On von Karman's equations and the buckling of a thin elastic plate


Authors: Melvyn S. Berger and Paul C. Fife
Journal: Bull. Amer. Math. Soc. 72 (1966), 1006-1011
DOI: https://doi.org/10.1090/S0002-9904-1966-11620-8
MathSciNet review: 0203219
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, The L, Ann. Scuola Norm. Sup. Pisa 13 (1959), 405-448. MR 125306
  • 2. F. Bauer and E. Reiss, Nonlinear buckling of rectangular plates, J. Soc. Indust. Appl. Math. 13 (1965), 603-627.
  • 3. G. Fichera, Linear elliptic differential systems and eigenvalue problems, Springer-Verlag, Berlin, 1965. MR 209639
  • 4. P. Fife, Nonlinear deflection of thin elastic plates under tension, Comm. Pure Appl. Math. 14 (1961), 81-112. MR 128697
  • 5. K. Friedrichs and J. Stoker, The nonlinear boundary value problem of the buckled plate, Amer. J. Math. 63 (1941), 839-888. MR 5866
  • 6. H. Keller, J. Keller and E. Reiss, Buckled states of circular plates, Quart. Appl. Math. 20 (1962), 55-65. MR 138257
  • 7. M. Krasnosel'skiĭ, Topological methods in the theory of nonlinear integral equations, Pergamon Press, New York, 1964. MR 159197
  • 8. N. Morosov, On the nonlinear theory of thin plates, Dokl. Akad. Nauk SSSR, 114 (1957), 968-971. MR 92422
  • 9. T. von Karman, Festigkeitsprobleme im Maschinbau, Encyl. der Mathematische Wissenschaften, Vol. IV-4 C, Leipzig, 1907-1914, 348-352.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1966-11620-8

American Mathematical Society