Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Normality and the numerical range of an operator


Author: J. G. Stampfli
Journal: Bull. Amer. Math. Soc. 72 (1966), 1021-1022
DOI: https://doi.org/10.1090/S0002-9904-1966-11625-7
MathSciNet review: 0212599
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. W. F. Donoghue, On a problem of Nieminen, Inst. Hautes Études Sci. Publ. Math. 16 (1963), 127-129. MR 152892
  • 2. S. Hildebrandt, Über den numerischen Wertebereich eines Operators, Math. Ann. 163 (1966), 230-247. MR 200725
  • 3. C. H. Meng, On the numerical range of an operator, Proc. Amer. Math. Soc. 14 (1963), 167-171. MR 143035
  • 4. T. Nieminen, A condition for the self-adjointness of a linear operator, Ann. Acad. Sci. Fenn. Ser. A. I No. 316 (1962), 3-5. MR 139012
  • 5. G. Orland, On a class of operators, Proc. Amer. Math. Soc. 15 (1964), 75-80. MR 157244
  • 6. C. R. Putnam, On the spectra of semi-normal operators, Trans. Amer. Math. Soc. 119 (1965), 509-523. MR 185446
  • 7. J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. MR 173161
  • 8. J. G. Stampfli, Minimal range theorems for operators with thin spectra, Trans. Amer. Math. Soc. (to appear). MR 229077
  • 9. J. Williams, Spectral sets and finite dimensional operators, Ph.D. Thesis, Univ. of Michigan, Ann Arbor, Michigan, 1965.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1966-11625-7

American Mathematical Society