ON THE SUMMABILITY OF THE DIFFERENTIATED
FOURIER SERIES

BY DANIEL WATERMAN

Dedicated to Professor A. Zygmund on the occasion of his 65th birthday
Communicated by H. Helson, July 21, 1966

A classical theorem of Fatou [2, p. 99] asserts that if \(f \in L(0, 2\pi) \)
and the symmetric derivative of \(f \) at \(x_0 \),

\[
f'_s(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}
\]

exists, then the differentiated Fourier series of \(f \) is Abel summable to \(f(x_0) \) at \(x_0 \), or equivalently, if \(u(r, x) = a_0/2 + \sum (a_k \cos kx + b_k \sin kx)r^k \)
is the associated harmonic function, then

\[
\lim_{r \to 1^-} u_x(r, x_0) = f'_s(x_0).
\]

Let us suppose that \(\phi \) is a real nonnegative function on an interval
to the right of the origin, that \(\phi(0) = 0 \), and that \(\phi(t) = O(t) \) as \(t \to 0 \).
We say that a set is \(\phi \)-dense at a point \(p \) if

\[
m(E^c \cap I)/\phi(m(I)) \to 0
\]
as \(m(I) \to 0 \), \(I \) an interval containing \(p \). If \(\phi \) is the identity function,
this reduces to ordinary metric density. In the case \(\phi(t) = t^\alpha \), we will
say that \(E \) is \(\alpha \)-dense at \(p \). Proceeding in a manner entirely analogous
to the classical definition of approximate limit and derivative, we
say that

\[
\phi-lim_{t \to t_0} g(t) = a
\]
if for every \(\epsilon > 0, E_\epsilon = \{ t \mid |g(t) - a| < \epsilon \} \) is \(\phi \)-dense at \(t_0 \), and we define the \(\phi \)-approximate symmetric derivative,

\[
\phi-f'_\alpha(x_0) = \phi-lim_{h \to 0} (f(x_0 + h) - f(x_0 - h))/2h.
\]

We restrict our attention here to the case of most immediate interest,
\(\alpha \)-density, and prove the following

Theorem. Suppose \(f \) is in \(L(0, 2\pi) \), of period \(2\pi \), essentially bounded
in a neighborhood of \(x_0 \), and, for some \(\alpha \geq 2 \), \(y = \alpha-f'_\alpha(x_0) \). Then the

1 Supported by National Science Foundation Grant No. GP-3987.
differentiated Fourier series of \(f \) is Abel summable to \(y \) at \(x_0 \). The value 2 cannot be replaced by a smaller value nor can essentially bounded be replaced by integrable.

Ikegami [1] has shown that \(f'_i \) cannot be replaced by \(f'_{ap} \) in Fatou's theorem, even if \(f \) is bounded. He introduced
\[
\alpha f'_{ap}(x_0) = \alpha \lim_{h \to 0^+} \frac{f(x_0+h)-f(x_0)}{h}
\]
and attempted to show that, for bounded \(f \), Fatou's theorem holds with this derivative if \(\alpha > 4 \). His argument, however, contains an error, and when it is corrected yields this result only for \(\alpha > 5 \).

Turning to the proof of our result, we may suppose that \(x_0 = 0 \), \(f(0) = 0 \), and also \(\alpha f''_{ap}(0) = 0 \) as in the classical case [2, p. 100–101]. For the Poisson kernel,
\[
P(r, t) = \frac{1}{2} \frac{1 - r^2}{1 - 2r \cos t + r^2},
\]
we have the estimates
\[
P(r, t) < C\eta/(\eta^2 + t^2), \quad |P_t(r, t)| < C\eta t/(\eta^4 + t^4),
\]
where \(\eta = 1 - r \) and, throughout this paper, \(C \) will denote a positive constant not necessarily the same at each occurrence. The first estimate here is well known; the other may be obtained in a similar manner.

We may assume \(\alpha = 2 \), for if \(\alpha f''_{ap}(0) \) exists for some \(\alpha > 2 \), it also exists and has the same value for \(\alpha = 2 \).

There is a \(\delta_0 > 0 \) and an \(M > 0 \) such that \(|f(x)| \leq M \) a.e. in \((-\delta_0, \delta_0) \). Now
\[
u_x(r, 0) = -\frac{1}{\pi} \int_0^\pi (f(t) - f(-t)) P_t(r, t) dt
\]
and, for any \(\delta \in (0, \delta_0) \), we may partition the interval of integration into \((0, \delta) \), \((\delta, \delta_0) \), and \((\delta_0, \pi) \), denoting the absolute values of the above integral over these intervals by \(\delta_1 \), \(\delta_2 \), and \(\delta_3 \) respectively. We show that these values can be made arbitrarily small by choosing \(r \) sufficiently close to 1.

Clearly
\[
\delta_2 \leq 2M \int_\delta^\pi |P_t(r, t)| dt < C\eta \delta^{-2}
\]
and
Given an $\varepsilon > 0$, we set

$$E = \{ t \mid \left| f(t) - f(-t) \right| / 2t \geq \varepsilon \}.$$

Then

$$\mathcal{G}_1 \leq \left| \int_{E \cap (0, \delta)} \cdots \right| + \left| \int_{E \cap (0, \delta)} \cdots \right| = \mathcal{G}_1' + \mathcal{G}_1''$$

and we have

$$\mathcal{G}_1'' \leq \varepsilon \int_0^{\delta} 2t \left| P_t(r, t) \right| dt < -2\varepsilon \int_0^{\delta} tP_t(r, t) dt < C\varepsilon$$

by an integration by parts.

The estimation of \mathcal{G}_1' is somewhat more difficult.

We now choose δ such that, for $t \in (0, \delta)$,

$$m(E \cap (0, t)) < \varepsilon t^2.$$

Let $t_1 = \delta$ and choose t_k, $k = 2, 3, \ldots$, in $(0, \delta)$, decreasing and converging to zero. We let $I_k = (t_{k+1}, t_k)$. Then

$$\mathcal{G}_1' \leq MC\eta \int_{E \cap (0, \delta)} t/(\eta^4 + t^4) dt$$

$$< C\eta \sum m(E \cap I_k)t_k/(\eta^4 + t_{k+1}^4) < C\eta \varepsilon \sum t_k/(\eta^4 + t_{k+1}^4).$$

Now let $t_k = \delta/2^{k-1}$. It is easily verified that

$$2^k \int_{I_k} t^2/(\eta^4 + t^4) dt > t_k^3/(\eta^4 + t_{k+1}^4)$$

for every k and, therefore,

$$\mathcal{G}_1' < C\eta \varepsilon \int_0^{\delta} t^2/(\eta^4 + t^4) dt < C\varepsilon.$$

Thus

$$\left| u_{\varepsilon}(r, 0) \right| < C(\varepsilon + \eta + \eta^\delta - 2) < C\varepsilon.$$
if \(\eta \) is sufficiently small, the constant being independent of the choice of \(\varepsilon \).

Suppose now that \(\alpha \in [1, 2) \) and choose \(\beta \in (\alpha, 2) \). Let \(I_n = (1/2^n, 1/2^n + 1/2^{n+1}) \) and \(E = \bigcup I_n \). Then if \(1/2^n < \ell \leq 1/2^{n-1} \), there exist positive constants \(C \) and \(C' \) such that

\[
C/2^{\beta n} < m(E \cap (0, \ell)) < C'/2^{\beta n}
\]

for every \(n \). Thus \(m(E \cap (0, \ell)) = o(t^\alpha) \) as \(t \to 0 \). If \(f = \chi_E \), the characteristic function of \(E \), then for sufficiently small \(\varepsilon > 0 \),

\[
\{ t \mid |f(t) - f(-\ell)|/2t | \geq \varepsilon \} = E
\]

and so

\[
\alpha = f'_{\text{ess}}(0) = 0.
\]

For \(0 < a < b < \pi/2 \), it may be shown that

\[
- \int_a^b P_t(r, t) dt > C \frac{(a + b)(b - a)}{\eta^4 + b^4}.
\]

Thus, if \(\eta = 2^{-k} \), we have

\[
\varphi_k(r, 0) = - \frac{1}{\pi} \sum \int_{I_n} P_t(r, t) dt > - \frac{1}{\pi} \int_{I_{k+1}} P_t(r, t) dt
\]

\[
> C2^{-(\beta+2)k}/(2^{-4k} + 2^{-(k+1)} + 2^{-\beta(k+1)})^4
\]

\[
> C2^{(2-\beta)k} \to \infty
\]

as \(k \to \infty \), which shows that values of \(\alpha < 2 \) are inadmissible.

Finally suppose \(\alpha \geq 2, \beta > \alpha \), and define \(E \) as above. Now let \(f = \sum 2^{(\beta-1)n} \chi_{I_n} \). Then \(f \in L(0, 2\pi) \) and \(\alpha f'_{\text{ess}}(0) = 0 \). However,

\[
\varphi_k(r, 0) > - \int_{I_{k+1}} 2^{(\beta-1)(k+1)} P_t(r, t) dt
\]

\[
> C2^{(\beta-1)(k+1)} \cdot 2^{(2-\beta)k} = C2^k \to \infty
\]

as \(k \to \infty \), which shows that the requirement of essential boundedness cannot be removed.

REFERENCES

WAYNE STATE UNIVERSITY