HIGHER RANK CLASS GROUPS

BY LUTHER CLABORN AND ROBERT FOSSUM

Communicated by P. T. Bateman, October 24, 1966

Let A be a noetherian ring which is locally Macaulay. For each integer $i \geq 0$, groups $C_i(A)$ and $W_i(A)$ are defined, each sequence of groups generalizing to higher dimensions the usual class group of an integrally closed noetherian domain. $C_i(A)$ is called the ith class group of A, and $W_i(A)$ is called the ith homological class group of A. The main purpose of this note is to show that both sequences of groups have properties analogous to the class group of a Noetherian integrally closed integral domain, and finally to establish a connection between them.

1. Throughout this section A is a commutative noetherian ring which is locally Macaulay. A set of elements x_1, \ldots, x_s is an A-sequence of length s if $x_1A + \cdots + x_sA \neq A$ and $x_1A + \cdots + x_iA: x_{i+1} = x_1A + \cdots + x_iA$ for $i = 0, 1, \ldots, s - 1$. Count the empty set as an A-sequence of length 0 and specify that it generate the zero ideal of A.

Note that if x_1, \ldots, x_s is an A-sequence of length s, then $x_1A + \cdots + x_sA$ is an unmixed ideal of A of height s.

For each $i \geq 0$, form the free abelian group on the generators (p) where p is a height i prime ideal of A. This group will be denoted by $D_i(A)$. For each A-sequence x_1, \ldots, x_i, consider the element $\sum e(x_1, \ldots, x_i | A p)(p)$ of D_i (here $e(y_1, \ldots, y_i | M)$ denotes the multiplicity of $y_1A + \cdots + y_iA$ on M). Let R_i designate the subgroup of D_i generated by all such elements. Set $C_i(A) = D_i(A)/R_i$ and call $C_i(A)$ the class group of rank i for A. Denote the image of (p) in $C_i(A)$ by $\text{cl}(p)$. Set $C.(A) = \oplus C_i(A)$.

EXAMPLES. $C_0(A)$ is always finitely generated. $C_0(A)$ is finite if and only if (0) is a primary ideal of A. $C_0(A) = 0$ if and only if A is a domain.

If A is a Dedekind domain, then $C_1(A)$ is the ordinary ideal class group of A. More generally, if A is integrally closed, then $C_1(A)$ is the class group of A [1, §1, no. 10].

We have not been able to locate the following lemma in the literature.

1 This research was supported by the National Science Foundation Grant GP-5478.
Lemma 1.1. Let S be a multiplicatively closed subset of A. If y_1, \ldots, y_i is an A_S-sequence, then there is an A-sequence x_1, \ldots, x_i such that $\sum y_i A_S = \sum x_i A_S$.

Theorem 1.2. (Cf. [1, Proposition 17, §1, no. 10].) Let S be a multiplicatively closed subset of A. Then for each $i \geq 0$, there is an epimorphism $C_i(A) \to C_i(A_S)$ deduced from $\langle p \rangle \to 0$ if $p \cap S \neq \emptyset$ and $\langle p \rangle \to \langle p A_S \rangle$ if $p \cap S = \emptyset$. The kernel is generated by $\{cl(p)\}$ where $ht(p) = i$ and $p \cap S \neq \emptyset$.

Corollary 1.3. (Cf. [4, Lemma 1.7].) If $p \cap S \neq \emptyset$ implies that $cl(p) = 0$, then the epimorphism of Theorem 1.2 is an isomorphism.

Corollary 1.4. If $C_i(A_S) = 0$, then $C_i(A)$ is generated by $\{cl(p)\}$ where $ht(p) = i$ and $p \cap S \neq \emptyset$.

Corollary 1.5. There is an epimorphism $C_i(A) \to \oplus_{ht(p) = i} C_i(A_p)$ deduced from $(p) \to (p A_p)$.

Theorem 1.6. If x_1, \ldots, x_k is an A-sequence, then there is a homomorphism $C_i(A / \sum x_i A) \to C_{i+k}(A)$ whose image is the subgroup of $C_{i+k}(A)$ generated by $\{cl(p)\}$ where $ht(p) = i+k$ and $p \supseteq \sum x_i A$.

With Theorem 1.2, this yields

Corollary 1.7. Suppose that x is an A-sequence. Then the sequence

$$C_i(A/xA) \to C_{i+1}(A) \to C_{i+1}(A[x^{-1}]) \to 0$$

is exact.

An application of the associative law for multiplicities yields

Theorem 1.8. If $ht(p) = k$ and $cl(p) = 0$, then there is a homomorphism $C_i(A/p) \to C_{i+k}(A)$ whose image is the subgroup of $C_{i+k}(A)$ generated by the $cl(q)$ where $ht(q) = i+k$ and $q \supseteq p$.

Using techniques similar to those of [2, Proof of Proposition 7-1] we get

Lemma 1.9. Suppose that $C_i(A_p) = 0$ for each prime ideal p of height i of A. Then $C_{i+1}(A[X])$ is generated by $\{cl(q A[X])\}$ where q ranges over the prime ideals of A of height $i+1$.

Theorem 1.10. If $C_i(A_p) = 0$ for all prime ideals p of A of height i, then there is an epimorphism $C_{i+1}(A) \to C_{i+1}(A[X])$.

Corollary 1.11. (Cf. [1, Corollary to Theorem 2].) $C_i(A) = 0$ implies $C_i(A[X]) = 0$.

Corollary 1.12. If \(F \) is a field, then \(C_r(F[X_1, \ldots, X_n]) = 0 \).

Corollary 1.13. Let the Krull dimension of \(A \) be \(n < \infty \). Suppose that \(C_n(p) = 0 \) for each prime ideal \(p \) of \(A \) of height \(n \). Then \(C_{n+1}(A[X]) = 0 \).

A theorem similar to Theorem 1.10 is

Theorem 1.14. Let \(A \) and \(B \) be finitely generated over a field \(F \). Suppose, that for each \(i \geq 0 \), \(C_i(A) = 0 \) for any prime ideal \(p \) of height \(i \) of \(A \), and that \(C_i(K \otimes_F B) = 0 \) for any overfield \(K \) of \(F \). Then there is an epimorphism \(C_i(A) \to C_i(A \otimes_F B) \) given by \(\text{cl}(p) \to \text{cl}(p \otimes_F B) \). In particular, \(C_i(A) = 0 \) implies \(C_i(A \otimes_F B) = 0 \).

Theorem 1.15. For \(i \geq 1 \), \(C_i(A_1 \oplus A_2) = C_i(A_1) \oplus C_i(A_2) \).

2. Let \(A \) be a commutative noetherian ring. The hypotheses on \(A \) in §1 need not be assumed in order to define the groups \(W_i(A) \). The reader is referred to [3] for the \(K \)-theory needed here.

Let \(\mathfrak{M}_i(A) = \mathfrak{M}_i \) denote the category of finitely generated \(A \)-modules \(M \) such that \(M_p = 0 \) for all prime ideals \(p \) of \(A \) with \(ht(p) < i \).

Then \(\mathfrak{M}_i \) is a Serre subcategory of \(\mathfrak{M}_j \) for all \(j > i \). Let \(K^i(\mathfrak{C}) \) denote the \(i \)th Grothendieck group of the category \(\mathfrak{C} \) for \(i = 0, 1 \). If \(\mathfrak{C} \in \mathfrak{C} \), then \(\gamma(C) \) denotes the image (or class) of \(C \) in \(K^0(\mathfrak{C}) \).

Proposition 2.1. \(K^0(\mathfrak{M}_i/\mathfrak{M}_{i+1}) \) is isomorphic to \(D_i(A) \), the isomorphism being given by the length function.

Consider the following commutative diagram

\[
\begin{array}{ccccccccc}
K^0(\mathfrak{M}_i/\mathfrak{M}_{i+1}) & \rightarrow & K^0(\mathfrak{M}_i) \\
\downarrow & & \downarrow \\
K^1(\mathfrak{M}_i/\mathfrak{M}_{i+1}) & \rightarrow & K^0(\mathfrak{M}_{i+1}) & \rightarrow & K^0(\mathfrak{M}_i) & \rightarrow & D_i(A) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & = \\
K^1(\mathfrak{M}_i/\mathfrak{M}_{i+1}) & \rightarrow & D_{i+1}(A) & \rightarrow & K^0(\mathfrak{M}_i/\mathfrak{M}_{i+1}) & \rightarrow & D_i(A) & \rightarrow & 0 \\
\downarrow & & = \\
0 & & 0 & & \end{array}
\]

Because each element in \(\mathfrak{M}_i/\mathfrak{M}_{i+1} \) has finite length, each of the rows is exact. The columns are also exact.

Since the group \(D_i(A) \) is free, the kernels of \(g \) and \(g' \) in the above diagram are direct summands of their respective domains. For each
\(i \geq 0 \) define the group \(Z_{i+1}(A) \), and the \textit{homological class group of rank} \(i+1 \), \(W_{i+1}(A) \), to be the kernels of \(g \) and \(g' \) respectively. Since the rows are exact this is the same as saying that \(Z_{i+1}(A) \) is the image of \(f \) and \(W_{i+1}(A) \) is the image of \(f' \). Moreover

\[
K^0(\mathfrak{M}_i) = Z_{i+1}(A) \oplus D_i(A)
\]

and

\[
K^0(\mathfrak{M}_i/\mathfrak{M}_{i+1}) = W_{i+1}(A) \oplus D_i(A).
\]

The results of [3] yield

Proposition 2.2. \(K^1(\mathfrak{M}_i/\mathfrak{M}_{i+1}) \) is isomorphic to the direct sum of the groups of units of \(A_p/pA_p \), \(ht(p) = i \). Consequently the kernel of \(f' \) is generated by the \(\gamma(A/p+xA) \), \(x \in \mathfrak{p} \), as \(\mathfrak{p} \) ranges over the prime ideals of \(A \) of height \(i \), and hence \(W_{i+1}(A) \) is \(D_{i+1}(A) \) modulo the subgroup generated by these.

By convention \(W_0(A) = 0 \). Set \(W^*(A) = \bigoplus W_i(A) \).

Diagram chasing will give

Theorem 2.3. Let \(S \) be a multiplicatively closed subset of \(A \). For each \(i \) there is an epimorphism \(W_i(A) \rightarrow W_i(A_S) \) induced by the functor \(A_S \otimes A \rightarrow A_S \). The kernel is generated by \(\gamma(A/p) \) with \(p \subseteq S \neq \emptyset \), \(ht(p) = i \).

Corollary 2.4. If for each prime ideal \(\mathfrak{p} \) of \(A \) of height \(i \) with \(\mathfrak{p} \subseteq S \neq \emptyset \), \(\gamma(A/p) = 0 \) in \(K^0(\mathfrak{M}_i/\mathfrak{M}_{i+1}) \) then the epimorphism of Theorem 2.3 is an isomorphism.

Corollary 2.5. If \(W_i(A_S) = 0 \), then \(W_i(A) \) is generated by \(\{ \gamma(A/p) \} \), \(ht(p) = i \), \(\mathfrak{p} \subseteq S \neq \emptyset \).

Corollary 2.6. The functors \(A_p \otimes A \rightarrow A_p \) induce an epimorphism \(W_i(A) \rightarrow \bigoplus_{ht(p) = i} W_i(A_p) \).

Theorem 2.7. Let \(A \) be locally Macaulay, \(I \) an unmixed ideal of height \(k \). Then there is a homomorphism

\[
W_i(A/I) \rightarrow W_{i+k}(A)
\]

induced by considering each \(A/I \)-module as an \(A \)-module. The image is generated by the \(\gamma(A/p) \), \(\mathfrak{p} \) a prime ideal of height \(i+k \) containing \(I \).

Using Theorems 2.3 and 2.7 one gets

Theorem 2.8. Let \(x \) be an \(A \)-sequence, \(A \) a locally Macaulay ring.

Then the sequence
\[W_i(A/xA) \to W_{i+1}(A) \to W_{i+1}(A[x^{-1}]) \to 0 \]

is exact.

Theorem 2.8. The functor \(A \otimes_A \) induces an epimorphism \(W_i(A) \to W_i(A[X]) \). Furthermore \(W_{n+1}(A[X]) = 0 \) if the Krull dimension of \(A \) is \(n < \infty \).

Corollary 2.9. \(W^\ast(A) = 0 \) implies \(W^\ast(A[X]) = 0 \).

Corollary 2.10. \(W^\ast(F[X_1, \ldots, X_n]) = 0 \) when \(F \) is a field.

Theorem 2.11. Let \(A_1 \) and \(A_2 \) be two rings. Then
\[W_i(A_1 \oplus A_2) = W_i(A_1) + W_i(A_2). \]

3. It is natural to ask if \(C_i(A) = W_i(A) \) when both are defined. There are several results in this direction.

Theorem 3.1. \(W_i(A) \) is a homomorphic image of \(C_i(A) \).

Theorem 3.2. If \(C_i(A) = 0 \), then \(W_{i+1}(A) = C_{i+1}(A) \).

Corollary 3.3. If \(A \) is a domain, then \(W_1(A) = C_1(A) \).

Corollary 3.4. \(C^\ast(A) = 0 \) if, and only if, \(A \) is an integral domain and \(W^\ast(A) = 0 \).

For an example which shows that in general \(W^\ast(A) \neq C^\ast(A) \) let \(Q \) be a primary ring which is not a field and set \(A = Q[X] \). Then \(W_1(A) = 0 \) while \(C_1(A) \) is an infinite group.

References

University of Illinois, Urbana