Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology


Authors: Leonard E. Baum and J. A. Eagon
Journal: Bull. Amer. Math. Soc. 73 (1967), 360-363
MathSciNet review: 0210217
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. L. E. Baum, A statistical estimation procedure for probabilistic functions of Markov processes, IDA-CRD Working Paper No. 131.
  • 2. G. R. Blakley, Homogeneous non-negative symmetric quadratic transformations, Bull. Amer. Math. Soc. 70 (1964), 712-715. MR 197476
  • 3. G. R. Blakley and R. D. Dixon, The sequence of iterates of a non-negative nonlinear transformation. III, The theory of homogeneous symmetric transformations and related differential equations, (to appear).
  • 4. G. R. Blakley, Natural selection in ecosystems from the standpoint of mathematical genetics, (to appear).
  • 5. Wolfgang Hahn, Theory and application of Liapunov's direct method, Prentice-Hall, Englewood Cliffs, N. J., 1963, pp. 139-150. MR 147716
  • 6. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1959.
  • 7. Ted Petrie, Classification of equivalent processes which are probabilistic functions of finite Markov chains, IDA-CRD Working Paper No. 181, IDA-CRD Log No. 8694.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1967-11751-8