Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology


Authors: Leonard E. Baum and J. A. Eagon
Journal: Bull. Amer. Math. Soc. 73 (1967), 360-363
MathSciNet review: 0210217
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. L. E. Baum, A statistical estimation procedure for probabilistic functions of Markov processes, IDA-CRD Working Paper No. 131.
  • 2. G. R. Blakley, Homogeneous nonnegative symmetric quadratic transformations, Bull. Amer. Math. Soc. 70 (1964), 712–715. MR 0197476 (33 #5641), http://dx.doi.org/10.1090/S0002-9904-1964-11182-4
  • 3. G. R. Blakley and R. D. Dixon, The sequence of iterates of a non-negative nonlinear transformation. III, The theory of homogeneous symmetric transformations and related differential equations, (to appear).
  • 4. G. R. Blakley, Natural selection in ecosystems from the standpoint of mathematical genetics, (to appear).
  • 5. Wolfgang Hahn, Theory and application of Liapunov’s direct method, English edition prepared by Siegfried H. Lehnigk; translation by Hans H. Losenthien and Siegfried H. Lehnigk, Prentice-Hall Inc., Englewood Cliffs, N.J., 1963. MR 0147716 (26 #5230)
  • 6. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1959.
  • 7. Ted Petrie, Classification of equivalent processes which are probabilistic functions of finite Markov chains, IDA-CRD Working Paper No. 181, IDA-CRD Log No. 8694.


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1967-11751-8
PII: S 0002-9904(1967)11751-8