An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology

Authors:
Leonard E. Baum and J. A. Eagon

Journal:
Bull. Amer. Math. Soc. **73** (1967), 360-363

DOI:
https://doi.org/10.1090/S0002-9904-1967-11751-8

MathSciNet review:
0210217

Full-text PDF Free Access

References | Additional Information

**1.**L. E. Baum,*A statistical estimation procedure for probabilistic functions of Markov processes*, IDA-CRD Working Paper No. 131.**2.**G. R. Blakley,*Homogeneous non-negative symmetric quadratic transformations*, Bull. Amer. Math. Soc. 70 (1964), 712-715. MR**197476****3.**G. R. Blakley and R. D. Dixon,*The sequence of iterates of a non-negative nonlinear transformation*. III,*The theory of homogeneous symmetric transformations and related differential equations*, (to appear).**4.**G. R. Blakley,*Natural selection in ecosystems from the standpoint of mathematical genetics*, (to appear).**5.**Wolfgang Hahn,*Theory and application of Liapunov's direct method*, Prentice-Hall, Englewood Cliffs, N. J., 1963, pp. 139-150. MR**147716****6.**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge Univ. Press, New York, 1959.**7.**Ted Petrie,*Classification of equivalent processes which are probabilistic functions of finite Markov chains*, IDA-CRD Working Paper No. 181, IDA-CRD Log No. 8694.

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1967-11751-8