Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Wiener integral representations for certain semigroups which have infinitesimal generators with matrix coefficients


Author: Donald G. Babbitt
Journal: Bull. Amer. Math. Soc. 73 (1967), 394-397
DOI: https://doi.org/10.1090/S0002-9904-1967-11767-1
MathSciNet review: 0209901
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. D. Babbitt, The Wiener integral and the Schrödinger operator, Trans. Amer. Math. Soc. 116 (1965), 66-78. See also Correction to the Wiener integral and the Schrödinger operator, ibid., 121 (1966), 549-552. MR 186926
  • 2. J. A. Beekman, Gaussian processes and generalized Schrödinger equations, J. Math. Mech. 14 (1965), 789-806. MR 179841
  • 3. R. H. Cameron, The generalized heat equation and a corresponding Poisson formula, Ann. of Math. 50 (1954), 434-462. MR 61261
  • 4. Yu. L. Daleckii, Continual integrals associated with certain differential equations and systems, Soviet Math. Dokl. 2 (1961), 259-263.
  • 5. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
  • 6. E. B. Dynkin, Markov processes, Vol. 1, Academic Press, New York, 1965.
  • 7. J. Feldman, On the Schrödinger and heat equations with non-negative potentials, Trans. Amer. Math. Soc. 108 (1963), 251-264. MR 160264
  • 8. R. K. Getoor, Additive functionals of a Markov process, Pacific J. Math. 7 (1957), 1577-1591. MR 94850
  • 9. J. Ginibre, Reduced density matrices of quantum gases. I, II, and III, J. Math. Phys. 6. (1965), 238-251, 252-262, 1432-1446.
  • 10. M. Kac, On some connections between probability theory and differential and integral equations, Proc. Second Sympos. on Mathematical Statistics and Probability, pp. 184-215, Univ. of Calif. Press, Berkeley, Calif., 1951. MR 45333
  • 11. D. Ray, On the spectra of second order differential operators, Trans. Amer. Math. Soc. 77 (1954), 299-321. MR 66539


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1967-11767-1

American Mathematical Society