The Dirichlet problem for nonuniformly elliptic equations

Author:
Neil S. Trudinger

Journal:
Bull. Amer. Math. Soc. **73** (1967), 410-413

DOI:
https://doi.org/10.1090/S0002-9904-1967-11771-3

MathSciNet review:
0214916

Full-text PDF Free Access

References | Additional Information

**1.**D. Gilbarg,*Boundary value problems for non-linear elliptic equations in n variables*, Nonlinear problems, Univ. of Wisconsin Press, Madison, Wis., 1963, pp. 151-160. MR**146506****2.**P. Hartman and G. Stampacchia,*On some nonlinear elliptic differential functional equations*, Acta Math. 115 (1966), 271-310. MR**206537****3.**P. Hartman,*On quasilinear elliptic functional differential equations*, Proceedings of the International Symposium on Differential Equations and Dynamical Systems, Puerto Rico, December 1965 (to appear). MR**221072****4.**H. Jenkins and J. Serrin,*The Dirichlet problem for the minimal surface equation in higher dimensions*, J. Reine Angew. Math, (to appear). MR**222467****5.**O. A. Ladyzhenskaya and N. N. Ural'tseva,*Linear and quasilinear elliptic equations*, Izd. Nauka, Moscow (1964). (Russian)**6.**Z. C. Mottler,*Existence theorems for certain quasilinear elliptic equations*, Pacific J. Math. 17 (1966), 279-299. MR**206477****7.**G. Stampacchia,*On some multiple integral problems in the calculus of variations*, Comm. Pure Appl. Math 16 (1963), 382-422. MR**155209****8.**N. S. Trudinger,*Quasilinear elliptic partial differential equations in n variables*, Doctoral Dissertation, Stanford University, Department of Mathematics, July, 1966.

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1967-11771-3