Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



An inequality for the eigenvalues of a class of self-adjoint operators

Author: William Stenger
Journal: Bull. Amer. Math. Soc. 73 (1967), 487-490
MathSciNet review: 0208385
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Weinstein, Intermediate problems and the maximum-minimum theory of eigenvalues, J. Math. Mech. 12 (1963), 235-246. MR 155083
  • 2. A. Weinstein, An invariant formulation of the maximum-minimum theory of eigenvalues, J. Math. Mech. 16 (1966), 213-218. MR 212604
  • 3. W. Stenger, On Poincaré's bounds for higher eigenvalues, Bull. Amer. Math. Soc. 72 (1966), 715-718.
  • 4. W. Stenger, The maximum-minimum principle for the eigenvalues of unbounded operators, Notices Amer. Math. Soc. 13 (1966), 731.
  • 5. N. Aronszajn, The Rayleigh-Ritz and A. Weinstein methods for approximation of eigenvalues, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 474-480. MR 27955
  • 6. H. Hamburger and M. E. Grimshaw, Linear transformations in n-dimensional vector space, Cambridge Univ. Press, Cambridge, 1951. MR 41355
  • 7. G. Fichera, Linear elliptic differential systems and eigenvalue problems, Springer-Verlag, New York, 1965. MR 209639
  • 8. S. H. Gould, Variational methods for eigenvalue problems. An introduction to the Weinstein method of intermediate problems, 2nd ed., Univ. of Toronto Press, Toronto, 1966. MR 209662
  • 9. J. B. Diaz, Upper and lower bounds for eigenvalues, Proceedings of the Eighth Symposium on Applied Mathematics (American Mathematical Society), McGraw-Hill, New York, 1958. MR 93907
  • 10. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1911), 441-469.

Additional Information


American Mathematical Society