NONTRIVIAL m-INJECTIVE BOOLEAN ALGEBRAS
DO NOT EXIST

BY J. DONALD MONK

Communicated by R. S. Pierce, March 9, 1967

We adopt the notation of Sikorski [3] with the following additions. A Boolean algebra \(\mathfrak{A} \) is trivial iff it has only one element. \(\mathfrak{A} \) is m-injective iff \(\mathfrak{A} \) is an m-algebra and whenever we are given m algebras \(\mathfrak{B} \) and \(\mathfrak{C} \) with m-homomorphisms \(f, g \) of \(\mathfrak{B} \) into \(\mathfrak{A} \) and \(\mathfrak{C} \) into \(\mathfrak{A} \) respectively, and with \(g \) one-one, there is an m-homomorphism \(k \) of \(\mathfrak{C} \) into \(\mathfrak{A} \) such that \(f = k \circ g \) (\(\circ \) denotes composition of functions). Obviously every trivial Boolean algebra is m-injective for any \(m \). Halmos [1] raised the question concerning what \(\sigma \)-injective Boolean algebras look like, and Linton [2] derived interesting consequences from the assumption that nontrivial \(\sigma \)-injectives exist.

The theorem of the title follows easily from the following two lemmas, the first of which is well known, while the second has some independent interest.

Lemma 1. If \(\mathfrak{A} \) satisfies the m-chain condition, \(\{ A_t \}_{t \in T} \) is a set of elements of \(\mathfrak{A} \), and \(\bigcup_{t \in T} A_t \) exists, then there is a subset \(S \) of \(T \) with \(\mathfrak{S} \leq \mathfrak{m} \) such that \(\bigcup_{s \in S} A_s \) exists and equals \(\bigcup_{t \in T} A_t \).

Proof. Let \(\mathfrak{A} \) be a maximal set of pairwise disjoint elements of \(\mathfrak{A} \) such that for every \(B \subseteq \mathfrak{B} \) there is a \(t \in T \) such that \(B \subseteq A_t \) (such a \(\mathfrak{B} \) exists by Zorn's lemma). With every \(B \subseteq \mathfrak{B} \) one can associate an element \(t(B) \) of \(T \) such that \(B \subseteq \bigcup_{t(B)} A_t(B) \). By the m-chain condition, \(\mathfrak{S} \leq \mathfrak{m} \), and hence also \(\{ t(B) \}_{B \subseteq \mathfrak{B}} \) is m-indexed. Now \(\bigcup_{B \subseteq \mathfrak{B}} B \) exists and equals \(\bigcup_{t \in T} A_t \). For, if this is not true then, by virtue of the fact that \(B \subseteq \bigcup_{t \in T} A_t \) for each \(B \subseteq \mathfrak{B} \), it follows that there is a \(C \neq \Lambda \) such that \(B \cap C = \Lambda \) for all \(B \subseteq \mathfrak{B} \), while \(C \subseteq \bigcup_{t \in T} A_t \). Then \(C \cap A_{t_0} \neq \Lambda \) for a certain \(t_0 \in T \), and \(\mathfrak{B} \cup \{ C \cap A_{t_0} \} \) is a set properly including \(\mathfrak{B} \) with all the properties of \(\mathfrak{B} \). This contradiction shows that \(\bigcup_{B \subseteq \mathfrak{B}} B \) exists and equals \(\bigcup_{t \in T} A_t \). Obviously, then, \(\bigcup_{B \subseteq \mathfrak{B}} A_{t(B)} \) also exists and equals \(\bigcup_{t \in T} A_t \), as desired.

Lemma 2. For every \(m \) there is a complete Boolean algebra \(\mathfrak{A} \) such that every nontrivial \(\sigma \)-homomorphic image of \(\mathfrak{A} \) has cardinality at least \(m \).

Proof. Let \(\mathfrak{B} \) be a free Boolean algebra on \(m \) generators, and let \(\mathfrak{A} \) be a completion of \(\mathfrak{B} \). By [3, pp. 72, 156], \(\mathfrak{A} \) satisfies the \(\sigma \)-chain condition. Let \(I \) be a proper \(\sigma \)-ideal of \(\mathfrak{A} \). By Lemma 1, \(I \) is principal;
say \(I \) is generated by \(A \subseteq \mathcal{A} \). Then \(\mathcal{A}/I \) is isomorphic to \(\mathcal{A}|(-A) \) (see [3, pp. 30–31]); moreover, \(I \) proper implies that \(-A \neq \mathcal{A} \). But \(\mathcal{A} \) is homogeneous (see [3, pp. 106, 152]), and hence \(\mathcal{A} \) is isomorphic to \(\mathcal{A}/I \). Thus \(\mathcal{A}/I \) has at least \(m \) elements, as desired.

Theorem. Nontrivial \(m \)-injective Boolean algebras do not exist.

Proof. Suppose that \(\mathcal{A} \) is a nontrivial \(m \)-injective Boolean algebra. Let \(\mathcal{B} \) be the two-element subalgebra of \(\mathcal{A} \), and let \(\mathcal{C} \) be a complete Boolean algebra such that every nontrivial \(\sigma \)-homomorphic image of \(\mathcal{C} \) has power greater than \(\mathcal{A} \). Let \(f \) and \(g \) be the natural isomorphisms of \(\mathcal{B} \) and \(\mathcal{A} \) and \(\mathcal{A} \) into \(\mathcal{C} \) respectively. By the \(m \)-injectiveness of \(\mathcal{A} \) we obtain an \(m \)-homomorphism from \(\mathcal{C} \) onto a nontrivial subalgebra of \(\mathcal{A} \), which is impossible.

Linton has remarked to the author that this theorem can be improved to show that the category of \(m \)-algebras does not have a cogenerator.

References