DUALITY AND ORIENTABILITY IN BORDISM THEORIES

BY DUANE O'NEILL

Communicated by P. E. Conner, Dec. 22, 1966

1. Introduction. A Poincaré duality theorem appears in the literature of bordism theory in several places e.g. [1], [4]. In certain $K(\pi)$-theories, i.e. classical (co)homology theories, the connection between orientability of the tangent bundle of a manifold and this duality is well known [5]. It is interesting to see how this same relationship holds in MG-theories and that a simultaneous proof can be given for several different G.

The author wishes to thank Glen E. Bredon for his help during the development of this note.

2. Notation. Throughout this note G_n will be one of $O(n)$, $SO(n)$, $U(n)$ or $SU(n)$. We let $\theta = \theta(G_n)$ be the disk bundle associated to the universal G_n-bundle. The Thom space, MG_n, is the total space of θ with the boundary collapsed to a point, the basepoint of MG_n. The Whitney sum of G-disk bundles induces the maps necessary to define the Thom spectrum MG and the maps giving the (co)homology products. We will denote by $(G^*(\))G^*(\)$ the (co)bordism theory associated to MG as in the classical work of G. W. Whitehead [6].

Let dn be the real dimension of the fiber of θ. The inclusion of a fiber into the total space of θ can be thought of as a bundle map covering the inclusion of the basepoint into the classifying space for G_n. There is then the associated map of Thom spaces which we denote by $e_n: S^{dn} = D^{dn}/\partial D^{dn} \rightarrow MG_n$. If $f: S^qX \rightarrow MG_n$ is a map, then we denote the associated cohomology class by $(f)^G(S^qX)$. It is easy to prove using the techniques of [6] that (e_n) is the identity element of $G^d(S^{dn})$ and that the identity element

$$e \in G^0(S^0) \xrightarrow{\Sigma^{dn}} (e_n) \in G^d(S^{dn})$$

where Σ^{dn} is the iterated suspension isomorphism.

Now we consider a closed differentiable n-manifold N^n and let $r: N \rightarrow BO(2(n+k))$ be the map classifying the stable unoriented tangent bundle of N. There is the sequence

$$BSU(n+k) \rightarrow BU(n+k) \rightarrow BSO(2(n+k)) \rightarrow BO(2(n+k)).$$

1 The author was partially supported by NSF GP-3990 during the preparation of this note.
Let τ_θ be the lift of τ to the appropriate classifying space, if possible. Let X be a topological space; $f: N \to X$ a map. The set of all triples (N, τ_θ, f) forms a monoid under disjoint union. We factor by the relation: $(N, \tau_\theta, f) = 0$ iff there exists W^{n+1} a differentiable manifold, a τ'_θ for W and an $f': W \to X$ such that (i) $\partial W = N$, (ii) $\tau'_\theta|\partial = \tau_\theta$, (iii) $f'|\partial = f$. It can be verified that the resulting group is isomorphic to $G_n(X)$ e.g. [1], [2].

3. Thom classes. Now we define classes $V_n \in \tilde{C}^{dn}(MG_n)$ by $V_n = (I_n)$ where $I_n: MG_n \to MG_n$ is the identity map and we state the

Theorem 1. V_n is an MG-orientation class for θ.

Proof. We must show that $e^*_n((V_n)) \in \tilde{C}^{dn}(S^d)$ is the suspension of $e \in \tilde{C}^0(S^0)$. But it is obvious that $e^*_n(V_n) = (e_n \circ I_n) = (e_n)$.

It follows from [3] that the cohomology theory G^* has a Thom isomorphism and a Gysin sequence for G-plane bundles.

In the remainder of this note, let $A = Z_2$ or Z as appropriate. There exist Thom classes $u_n \in \tilde{B}^{dn}(MG_n, A)$ i.e. θ is $K(A)$-orientable. Let $h_n: (MG_n, *) \to (K(A, dn), *)$ be a representative for the homotopy class u_n for every n. We obtain (if $d = 2$, we must extend the collection of maps by some suspensions) a spectral map $h: MG \to K(A)$. We notice that the preceding choice of a Thom class in G^*-theory implies that h maps $v_n \to u_n$. Hence, we see the

Lemma. h is an isomorphism on the coefficients $\tilde{C}^n(S^n)$.

Remark. In [2] Conner and Floyd introduced another spectral map of this type which they call $\beta: U^* \to K^*$. Since the definitions of β and h depend on the Thom classes of the range theory, V_n always maps to the nth Thom class. A first Chern class is also defined in [2]. It can be shown that the definition of [2] coincides with the usual definition of first Chern class as $\theta^* \circ j^*(V_1)$, where θ is the zero section of the bundle and j the map collapsing the total space of the bundle to its Thom space.

4. Manifolds. In the remainder of this note, let M be a differentiable manifold of real dimension m, whose stable tangent bundle is a G_l-bundle. We choose representatives $s_n: S^n \to K(A, n)$ for the homotopy class of the generator of $\tilde{B}^n(S^n, A)$ and obtain a spectral map $s: S \to K(A)$.

The diagram
commutes and induces the corresponding commutative diagram for the associated cohomology theories. Following [6, p. 271] we write the fundamental cocycle of $H^m(M; A)$ as $s(j) = \tilde{Z}(M)$ where $j: M \to S^m$ is a map collapsing everything outside a coordinate disk to the basepoint. We call the class $\tilde{\sigma}(M) = e((j)) \in G^m(M)$ the fundamental cocycle as well. Note that $h(\tilde{\sigma}(M)) = \tilde{Z}(M)$. Recall the definition of [6] that M is MG orientable iff there exists a $t \in G_m(M)$ so that $(\tilde{\sigma}(M), t) = e \in G_0(S^0)$.

Theorem 2. M a differentiable manifold with G_1 the group of the stable tangent bundle implies that M is MG orientable.

Corollary. If M as above then M has Poincaré duality with respect to MG (from [6]).

Proof of Theorem 2. Consider $\sigma(M) = [M, \tau_G, id_M] \in G_m(M)$. One can show that $h(\sigma(M)) = Z(M)$ the fundamental cycle in $H^m(M; A)$ by first showing that h can be identified with an edge homomorphism in a spectral sequence relating G_* and H_* (see [1, p. 17]). Then it is not difficult to calculate the value of $\sigma(M)$.

And finally we have the commutative diagram

\[
\begin{array}{ccc}
G^m(M) \otimes G_m(M) & \xrightarrow{\langle , \rangle} & G_0(pt) \\
\downarrow h \otimes h & & \downarrow h \\
H^m(M; A) \otimes H_m(M; A) & \xrightarrow{\langle , \rangle} & H_0(pt)
\end{array}
\]

where the h on the right is an isomorphism.

References