RESIDUALLY FINITE ONE-RELATOR GROUPS

BY GILBERT BAUMSLAG

Communicated by Michio Suzuki, May 16, 1967

Introduction. It seems to be commonly believed that the presence of elements of finite order in a group with a single defining relation is a complicating rather than a simplifying factor. This note is in support of the opposite point of view, lending respectability to the

CONJECTURE A. Every group with a single defining relation with non-trivial elements of finite order is residually finite.

In order to put our results in their proper setting let us define \(\langle l, m \rangle \) to be the group generated by \(a \) and \(b \) subject to the single defining relation \(a^{-1}b^l ab^m = 1 \):

\[
\langle l, m \rangle = (a, b; a^{-1}b^l ab^m = 1).
\]

Adding a third parameter we define \(\langle l, m; t \rangle \) = \((a, b; (a^{-1}b^l ab^m)^t = 1) \).

Let \(\mathcal{E} \) be the class of those groups \(\langle l, m \rangle \) satisfying \(|l| \neq 1 \neq |m|, lm \neq 0 \), and \(l \) and \(m \) relatively prime. Furthermore, let \(\mathcal{M} \) be the class of these groups \(\langle l, m; t \rangle \) satisfying the conditions imposed above on \(l \) and \(m \), and in addition the extra two conditions \(t > 1 \), and \(l, m \) and \(t \) relatively prime in pairs. The point of our initial remark is that \(\mathcal{M} \) looks more complicated than \(\mathcal{E} \). Actually \(\mathcal{E} \) is quite a nasty class of groups. Indeed the main result of [1] is that every group in \(\mathcal{E} \) is isomorphic to one of its proper factor groups, i.e. nonhopfian. Since finitely generated residually finite groups are hopfian (A. I. Mal'cev [2]) no group in \(\mathcal{E} \) is residually finite. Our contribution to Conjecture A is that the groups in \(\mathcal{M} \) are residually finite.

THEOREM 1. Every group in the class \(\mathcal{M} \) is residually finite.

In fact even more is true.

THEOREM 2. If \(l, m, t \) are relatively prime in pairs \((l \neq 0 \neq m)\) and if \(t \) is a power of a prime \(p \) \((t \neq 1)\) then the group \(\langle l, m; t \rangle \) is residually a finite \(p \)-group.

Conjecture A seems difficult. A somewhat easier related conjecture is

1 Support from the National Science Foundation is gratefully acknowledged. The author is a Sloan Fellow.
Conjecture A. Every finitely generated group with a single defining relation with nontrivial elements of finite order is hopfian.

The theory of groups with a single defining relation has been developed sufficiently for us to be able to prove

Theorem 3. Let G be a group with a single defining relation and let T be the subgroup of G generated by the elements of finite order. If G/T is hopfian, so is G.

The existence of the nonhopfian group $(2, 3)$ together with Theorem 1 show that the converse of Theorem 3 is false. This underlines to some extent the difficulties involved in the proof of Theorem 1.

Remarks on the proofs. The proof of Theorem 1 goes as follows. Suppose $G \subseteq \mathfrak{A}$. Thus

$$G = (a, b; (a^{-1}b^t a)^t = 1).$$

We observe that if N is the normal closure of b in G then G/N is infinite cyclic. Our procedure is to prove that N is residually finite. Since an extension of a residually finite group by another residually finite group need not be residually finite we have to establish that N is residually finite in such a way that we are able to deduce the residual finiteness of G. To establish the results we need about N we have to obtain sufficient information about certain one-relator subgroups from which N is constructed. This information is contained in the following lemmas.

Lemma 1. The groups

$$(a, b; (a^tb^m)^t = 1) \quad (t > 1)$$

contain a normal subgroup of finite index which is residually free.

Lemma 2. The groups

$$(a, b; (a^tb^m)^t = 1) \quad (t > 1)$$

are residually finite p-groups if t is a power of the prime p.

Both Lemma 1 and Lemma 2 make use of the Reidemeister-Schreier procedure for finding generators and defining relations for a subgroup of a group given by generators and defining relations (see [3, p. 86]) as well as the main results of [4] and [5] on the residual properties of certain generalized free products.

The proof of Theorem 2 involves a refinement of the proof of Theorem 1 and an old theorem of P. Hall, namely that an automorphism of
a finite p-group P which induces an automorphism of p-power order on P modulo its Frattini subgroup is itself of p-power order (see e.g. [6, p. 178]).

Finally the proof of Theorem 3 depends on the known structure of T [7] and the fact that in a one-relator group every pair of elements of maximal finite order are conjugate [8].

Extension of results. Theorem 1 can be extended to certain groups with a single defining relation on more than two generators. At the present time I am unable to relax the conditions on l, m and t to $t>1$. But it is certainly likely that $\langle l, m; t \rangle$ ($t>1$) is residually finite. This can probably be proved by similar arguments to those used in the proof of Theorem 1. A proof of Conjecture A, however, at this time, seems out of reach.

References

2. A. I. Mal'cev, *On isomorphic representations of infinite groups by matrices*, Mat. Sb. 8 (1940), 405–422.