A THEOREM ON RANK WITH APPLICATIONS TO MAPPINGS ON SYMMETRY CLASSES OF TENSORS

BY MARVIN MARCUS

Communicated by Gian-Carlo Rota, March 31, 1967

1. Results. Let R be a field containing a real closed subfield R_0. The main results of this announcement follow.

Theorem 1. Let A_1, A_2, \ldots, A_p be $m \times n$ matrices with entries in an infinite subset Ω of R containing the natural numbers in R_0. Let k be a positive integer and assume that the rank of each A_i is at least k. Then there exist nonsingular matrices E and F with entries in \mathbb{Q} such that every set of k rows (columns) of EA_iF is linearly independent, $i=1, \ldots, p$.

Corollary 1. If the matrices A_1, \ldots, A_p in Theorem 1 each have rank precisely k then every k-square subdeterminant of EA_iF is nonzero, $i=1, \ldots, p$.

Theorem 2. If A_1, \ldots, A_p are n-square complex Hermitian matrices all of rank at least k then there exists a nonsingular matrix E such that every set of k rows (columns) of E^*A_iE is linearly independent.

In 1933, J. Williamson [1] gave necessary and sufficient conditions for the compounds of two matrices to be equal. The nontrivial part of his result states the following: if A is a complex matrix of rank r and $r > m$ then $C_m(A) = C_m(B)$ if and only if $A = zB$ where $z^m = 1$. A result closely connected to Theorem 1 and generalizing the Williamson result can be proved. We state our theorem in an invariant setting.

Thus, let V be an n-dimensional space over the complex numbers, let H be a subgroup of the symmetric group S_m, $m \leq n$, and let χ be a complex valued character of degree 1 on H. A multilinear function $f(v_1, \ldots, v_m)$ is symmetric with respect to H and χ if

\[f(v_{\sigma(1)}, \ldots, v_{\sigma(m)}) = \chi(\sigma)f(v_1, \ldots, v_m) \]

for all v_1, \ldots, v_m in V and all $\sigma \in H$. Let P be a vector space and f a fixed multilinear function symmetric with respect to H and χ, $f: V \times \cdots \times V \to P$, such that for any multilinear function $g, g: V \times \cdots \times V \to U$, also symmetric with respect to H and χ, there exists a linear $h: P \to U$ that makes the following diagram commutative:

1 This research was completed under Grant AFOSR 698-67 awarded by the Air Force Office of Scientific Research.
Then the pair P, f is called a symmetry class of tensors associated with H and χ, e.g., $H = S_m$, $\chi = \text{sgn}$, $P = \Lambda^m V, f(v_1, \ldots, v_m) = v_1 \Lambda \cdots \Lambda v_m$, the usual mth Grassmann product. If T is a linear transformation on V then one defines a linear transformation h via the diagram (1) with $U = P$, $g(v_1, \ldots, v_m) = f(Tv_1, \ldots, Tv_m)$. In this case h is called the transformation induced by T and will be denoted here by $K(T)$. If $P = \Lambda^m V$ then $K(T)$ is the mth compound of T, $C_m(T)$. Another example: if H is the identity group then $P = \otimes_{i=1}^m V$, the mth tensor space over V, and $K(T) = \Pi^m(T)$, the mth Kronecker power of T.

We have the following generalization of Williamson’s result to an arbitrary symmetry class of tensors as described above. We do not present a proof here but this generalization depends directly on Theorem 1 for the case $p = 2$.

Theorem 3. If the rank of T is r and $r > m$, then $K(T) = K(S)$ if and only if $T = zS$ where $z^m = 1$.

Corollary 2. If V is a unitary space, the rank of T is r, and $r > m$, then T is normal if and only if $K(T)$ is normal.

2. **Proof outline.** We say that a set of $m \times n$ matrices (A_1, \ldots, A_p) have property R_k if there exists a nonsingular n-square matrix F such that every set of k columns of $A_i F, i = 1, \ldots, p$, is linearly independent: this is abbreviated $(A_1, \ldots, A_p) \in R_k$. It is clear that if we can prove that any set of p matrices all of rank at least k satisfy $(A_1, \ldots, A_p) \in R_k$ then Theorem 1 will follow. Observe that if S_1, \ldots, S_p are nonsingular m-square matrices then

\begin{equation}
(S_1 A_1, \ldots, S_p A_p) \in R_k
\end{equation}

if and only if $(A_1, \ldots, A_p) \in R_k$.

Now let L be the n-square matrix whose (i, j) entry is $i^j, i, j = 1, \ldots, n$. It is routine to verify that every subdeterminant of every order of L is nonzero. Next, let t_1, \ldots, t_n be independent indeterminates over R and define an n-square matrix $L(t_1, \ldots, t_n)$ over $R[t_1, \ldots, t_n]$ whose (i, j) entry is $t_i^j, i, j = 1, \ldots, n$. It follows that any specialization of t_1, \ldots, t_n to nonzero elements of Ω pro-
duces a matrix every one of whose subdeterminants is nonzero. According to (2) we can take $(A_1, \cdots, A_p) = (H_1, \cdots, H_p)$ where H_i is the Hermite normal form of $A_i, i = 1, \cdots, p$. Next, consider the matrices $B_i = H_iL(t_1, \cdots, t_n)$ and define the polynomial $p_i(t_1, \cdots, t_n)$ to be the product of all $C_{n,k}$ entries in the first row of the kth compound matrix of B_i, i.e., $C_k(B_i) = C_k(H_i)C_k(L(t_1, \cdots, t_n))$. The fact that A_i and hence H_i has rank at least k implies that there exists a specialization of p_i which is not zero. Hence the polynomial

$$P(t_1, \cdots, t_n) = \prod_{i=1}^{p} p_i(t_1, \cdots, t_n)$$

is not zero. It follows from a standard theorem on polynomials that there exist nonzero elements ξ_1, \cdots, ξ_n in Ω for which $P(\xi_1, \cdots, \xi_n) \neq 0$. In other words, there exist nonzero ξ_1, \cdots, ξ_n in Ω for which every entry in the first row of each of $C_k(H_i)(\xi_1, \cdots, \xi_n)$ is nonzero, $i = 1, \cdots, p$. This means that every set of k columns of each of $H_iL(\xi_1, \cdots, \xi_n)$ is linearly independent and proves the result.

The rest of the results announced above follow from Theorem 1.

Reference

University of California, Santa Barbara