
THE UNIVERSITY OF WISCONSIN

THE C^*-ALGEBRA GENERATED BY AN ISOMETRY

BY L. A. COBURN

Communicated by P. R. Halmos, April 24, 1967

1. Introduction. In this paper, I determine the structure of any C^*-algebra generated by an isometry. Using a theorem of Halmos [3], the problem is reduced to the study of C^*-algebras $\mathfrak{a}(A)$ generated by A and A^* where (i) A is unitary, (ii) $A = S_\alpha$ with S_α the shift of multiplicity α, and (iii) $A = W \oplus S_\alpha$ with W unitary. In case (i), the resulting algebra is isometrically *-isomorphic to the algebra $C(\sigma(A))$ of all complex-valued continuous functions on the spectrum of A and nothing more need be said. In cases (ii) and (iii), it turns out that $\mathfrak{a}(A)$ is isometrically *-isomorphic to $\mathfrak{a}(S_\alpha)$ so that $\mathfrak{a}(A)$ is independent of W and α. In each of these cases, there is a unique minimal closed two-sided ideal $\mathfrak{s}(A)$ such that $\mathfrak{a}(A)/\mathfrak{s}(A)$ is isometrically *-isomorphic to $C(T)$, where T is the perimeter of the unit circle. The ideal $\mathfrak{s}(A)$ is determined spatially in the cases $A = S_\alpha$ and $A = W \oplus S_\alpha$.

We begin with the notation. For our purposes, all Hilbert spaces are complex and all ideals are closed and two-sided. If $\{e_n: n = 0, 1, 2, \ldots\}$ is an orthonormal basis for a Hilbert space H then the shift $S = S_1$ is defined by $Se_n = e_{n+1}$. By a shift of multiplicity α is meant the α-fold direct sum $S \oplus S \oplus \cdots \oplus S$ acting on $H \oplus H \oplus \cdots \oplus H$. The orthogonal projection onto the one-dimensional subspace of H spanned by e_n is denoted by P_n.

If H (or H_i) is a Hilbert space then $\mathfrak{B}(H)$ (or $\mathfrak{B}(H_i)$) denotes the algebra of all bounded operators with the usual norm topology and \mathfrak{K} (or \mathfrak{K}_i) denotes the ideal of all compact operators. The natural quotient map from $\mathfrak{B}(H)$ to $\mathfrak{B}(H)/\mathfrak{K}$ ($\mathfrak{B}(H_i)/\mathfrak{K}_i$) to $\mathfrak{B}(H_i)/\mathfrak{K}_i$ is given by

1 Research supported by NSF Grant GP 5866.
If A is an operator in $\mathfrak{B}(H)$, the C^*-algebra generated by A will be named $\mathfrak{A}(A)$ or just \mathfrak{A} when there is no possible doubt about A. An operator A is called a Fredholm operator if $\pi(A)$ is invertible. The set of all Fredholm operators in $\mathfrak{B}(H)$ is denoted by \mathfrak{F}. It is known [1] that A is in \mathfrak{F} if and only if A has closed range and finite-dimensional null and defect spaces.

2. The algebra $\mathfrak{A}(S)$. Our first object is to determine the ideals of $\mathfrak{A}(S)$. For vectors y and z in H, we define the operator $T_{y,z}$ by

$$T_{y,z}(x) = (x, y)z.$$

It is well known that the smallest closed subspace of $\mathfrak{B}(H)$ containing all $T_{y,z}$ is just \mathfrak{K}.

Theorem 1. The algebra $\mathfrak{A}(S)$ contains the full ideal of compact operators \mathfrak{K} and $\mathfrak{K} \subset \mathfrak{S}$ for every nontrivial ideal \mathfrak{S} in $\mathfrak{A}(S)$.

Proof. Since $1 - SS^* = P_0$ is in \mathfrak{K}, we see that $\mathfrak{A} \cap \mathfrak{K}$ is a nontrivial ideal in \mathfrak{A}. Now suppose that \mathfrak{S} is any nontrivial ideal in \mathfrak{A}. If $A \neq 0$ is in \mathfrak{S} then A^*A is also in \mathfrak{S}. For some $N \geq 0$ we have $\|Ae_N\| \neq 0$. Since $S^mP_0S^m = P_m$, we see that P_m is in \mathfrak{A} for all $m \geq 0$. Hence $P_NA^*AP_N$ is in \mathfrak{S}. But

$$P_NA^*AP_Nx = (A^*AP_Nx, e_N)e_N = (x, P_NA^*Ae_N)e_N = \|Ae_N\|^2P_Nx;$$

so P_N is in \mathfrak{S} and thus $S^mP_NS^m = P_0$ is in \mathfrak{S}.

Now given any $\epsilon > 0$ and y in H there is a polynomial $p(x)$ so that $\|p(S)v_0 - y\| < \epsilon$. It follows that the operator T_{y,v_0} has the property that $\|P_0[p(S)]^*-T_{y,v_0}\| < \epsilon$. Thus, T_{y,v_0} is in \mathfrak{S}.

Corollary 1.1. The algebra $\mathfrak{A}(S)$ is dense in $\mathfrak{B}(H)$ with the strong topology.

Proof. \mathfrak{K} is strongly dense in $\mathfrak{B}(H)$. \square

Corollary 1.2. The shift S has no reducing subspaces except the trivial ones (0) and H.

Proof. Otherwise, by Corollary 1.1 there would be a proper subspace invariant under all the operators in $\mathfrak{B}(H)$. \square
We can now complete the ideal theory for \(\mathfrak{a}(S) \).

Theorem 2. The algebra \(\mathfrak{a}(S)/\mathcal{K} \) is *-isomorphic and isometric to \(C(T) \).

Proof. Since \(S^*S - SS^* = P_0 \) is in \(\mathcal{K} \), it is apparent that \(\mathfrak{a}/\mathcal{K} \) is an abelian \(C^* \)-algebra. Hence \(\mathfrak{a}/\mathcal{K} \) is *-isomorphic and isometric to \(C(X) \) where \(X \) is the maximal ideal space of \(\mathfrak{a}/\mathcal{K} \). Now \(\mathfrak{a}/\mathcal{K} \) is generated by \(\pi(S) \) and \(\pi(S^*) \) so \(X \) is homeomorphic to the spectrum of \(\pi(S) \) in \(\mathfrak{a}/\mathcal{K} \). By a theorem in [2], the spectrum of \(\pi(S) \) in \(\mathfrak{a}/\mathcal{K} \) is the set \(\{ \lambda : S - \lambda \text{ is not in } \mathfrak{a} \} \) and an elementary computation shows that this set is just the perimeter of the unit circle \(T \).

Theorems 1 and 2 determine the structure of the ideals of \(\mathfrak{a}(S) \) since the ideal theory for \(C(T) \) is well known.

3. The Algebra \(\mathfrak{a}(W \oplus S) \)

The next part of the program is to determine the structure of \(\mathfrak{a}(W \oplus S) \) where \(W \) is a unitary operator on \(H_1 \) and \(S \) is the shift on \(H_2 \) with \(H_1 \oplus H_2 = H \). We require a Lemma which may be of some intrinsic interest.

Lemma. If \(A \oplus B \) is in \(\mathfrak{a}(W \oplus S) \) then \(\| A \| \leq \| \pi_2(B) \| \leq \| B \| \).

Proof. There is a sequence of "polynomials" in two noncommuting "indeterminates,"

\[
p_n(x, y) = \sum a_{i_1i_2 \ldots i_k} x_1^{i_1} y_1^{i_2} x_2^{i_3} \ldots y_k^{i_k},
\]

such that \(p_n(W, W^*) \rightarrow A \) and \(p_n(S, S^*) \rightarrow B \) in the operator norm topology. Thus

\[
p_n(\pi_2(S), \pi_2(S^*)) \rightarrow \pi_2(B)
\]

since \(\pi_2 \) is norm-decreasing. Now applying the Gelfand transform to the abelian \(C^* \)-algebra generated by \(\pi_2(S) \), we see that \(\sup_{\lambda \in T} \| p_n(\lambda, \lambda) \| \rightarrow \| \pi_2(B) \| \) since the spectrum of \(\pi_2(S) \) in \(\mathfrak{a}(S)/\mathcal{K}_2 \) is \(T \) and the Gelfand transform is an isometry. On the other hand, applying the Gelfand transform to the \(C^* \)-algebra generated by \(W \), we see that \(\sup_{\lambda \in \sigma(W)} \| p_n(\lambda, \lambda) \| \rightarrow \| A \| \). Since \(\sigma(W) \subset T \), the desired result follows.

Theorem 3. The algebra \(\mathfrak{a}(W \oplus S) \) is isometrically *-isomorphic to \(\mathfrak{a}(S) \) under the mapping \(W \oplus S \rightarrow S \).

Proof. The mapping \(W \oplus S \rightarrow S \) extends to the "polynomials" described in the Lemma. The extension is clearly a *-homorphism. If \(\rho(x, y) \) is such a "polynomial" then

\[
\| \rho(W, W^*) \oplus \rho(S, S^*) \| = \max(\| \rho(W, W^*) \|, \| \rho(S, S^*) \|).
\]
But by the Lemma, $\|p(W, W^*)\| \leq \|p(S, S^*)\|$ so
$$\|p(W, W^*) \oplus p(S, S^*)\| = \|p(S, S^*)\|.$$
Hence, the mapping extends to an isometry from $\mathcal{A}(W \oplus S)$ onto $\mathcal{A}(S)$ which is also a *-isomorphism.

Corollary 3.1. The algebra $\mathcal{A}(W \oplus S)$ has a unique minimal nontrivial ideal, $\mathcal{J}(W \oplus S)$, and $\mathcal{A}(W \oplus S)/\mathcal{J}(W \oplus S) \cong C(T)$.

Proof. This follows from the properties of $\mathcal{A}(S)$ established in Theorems 1 and 2.

It is of some interest to determine the minimal ideal $\mathcal{J}(W \oplus S)$ spatially. This can be done in a manner similar to Theorem 1.

Theorem 4. The minimal nontrivial ideal $\mathcal{J}(W \oplus S)$ in $\mathcal{A}(W \oplus S)$ is $\mathcal{J}(W \oplus S) = 0 \oplus \mathcal{K}_2 = \mathcal{K} \cap \mathcal{A}(W \oplus S)$.

Proof. Since $(W^* \oplus S^*)(W \oplus S) - (W \oplus S)(W^* \oplus S^*) = 0 \oplus P_0,$ we see that $\mathcal{K} \cap \mathcal{A}$ is a nontrivial ideal in \mathcal{A}. Now suppose \mathcal{J} is any nontrivial ideal. By the Lemma, if $C \oplus D$ is a nonzero element of \mathcal{J} then $D \neq 0$. Hence, for some e_n in the basis $\{e_n: n = 0, 1, 2, \ldots\}$ for H_2, we have $\|De_n\| \neq 0$. The argument that $0 \oplus \mathcal{K}_2 \subset \mathcal{J}$ now finishes as in the proof of Theorem 1. Further, if $C \oplus D$ is in $\mathcal{K} \cap \mathcal{A}$ then C is in \mathcal{K}_2 and D is in \mathcal{K}_3. It follows from the Lemma that $\|C\| = 0$ so that $0 \oplus \mathcal{K}_2 = \mathcal{K} \cap \mathcal{A}$. □

4. **The general case.** For the case A an arbitrary isometry, the algebra $\mathcal{A}(A)$ can now be determined. Using a decomposition due to Halmos [3], any isometry A on H is either (i) unitary, (ii) unitarily equivalent to a shift S_α of multiplicity α, or (iii) unitarily equivalent to a direct sum $W \oplus S_\alpha$ where W is unitary. In the first case, $\mathcal{A}(A)$ is isometrically *-isomorphic to $C(\sigma(A))$. In case (ii), the mapping $S \mapsto S_\alpha$ induces an isometric *-isomorphism between $\mathcal{A}(A)$ and $\mathcal{A}(S)$ so the theory of §2 carries over to $\mathcal{A}(A)$. In case (iii), the mapping

$$W \oplus S \mapsto W \oplus S_\alpha$$

induces an isometric *-isomorphism between $\mathcal{A}(A)$ and $\mathcal{A}(W \oplus S)$ so the theory of §3 carries over to $\mathcal{A}(A)$. In cases (ii) and (iii), $\mathcal{A}(A) \cong \mathcal{A}(S)$ and there is a unique minimal ideal $\mathcal{J}(A) \neq 0$ with $\mathcal{A}(A)/\mathcal{J}(A) \cong C(T)$. Thus the algebraic structure is independent of W and α.

One can hope that knowing the ideals of $\mathcal{A}(A)$ makes possible a
classification of the \(\star \)-representations of \(\mathcal{A}(A) \). In fact, the representation theory for \(\mathcal{A}(S) \) can be handled by use of Theorem 1 and standard results on representations of \(\mathfrak{B}(H) \) and \(\mathfrak{K} \). In particular, using results from [4, p. 296] we see that every representation of \(\mathcal{A}(S) \) is a direct sum of identity representations and representations of \(C(T) \). Using the fact that for \(A \) an isometry, either \(\mathcal{A}(A) \cong C(\sigma(A)) \) or \(\mathcal{A}(A) \cong \mathcal{A}(S) \), the \(\star \)-representations for \(\mathcal{A}(A) \) can now be determined.

REFERENCES

Belfer Graduate School of Science, Yeshiva University