$H$-cobordant manifolds are not necessarily homeomorphic

Authors:
F. T. Farrell and W. C. Hsiang

Journal:
Bull. Amer. Math. Soc. **73** (1967), 741-744

DOI:
https://doi.org/10.1090/S0002-9904-1967-11856-1

MathSciNet review:
0215311

Full-text PDF

References | Additional Information

**1.**H. Bass and M. P. Murthy,*Grothendieck groups and Picard groups of abelian group rings*, (to appear). MR**219592****2.**F. T. Farrell,*The obstruction to fibering a manifold over a circle*, Bull. Amer. Math. Soc. 73 (1967), 737-752. MR**215310****3.**F. T. Farrell, Ph.D. Thesis, Yale University, New Haven, Conn., 1967.**4.**R. Lashof (editor),*Problems in differential and algebraic topology*, Seattle Conference 1963, Ann. of Math. (2)81 (1965), 565-591. MR**182961****5.**J. W. Milnor,*Whitehead torsion*, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR**196736****6.**S. P. Novikov,*Pontryagin classes, the fundamental group and some problems of stable algebras*(mimeographed) Internat. Congr. Math., 1966. MR**231401****7.**L. Siebenmann,*The obstruction to finding a boundary for an open manifold of dimension greater than five*, Ph.D. Thesis, Princeton University, Princeton, N. J., 1965.**8.**J. Stallings,*On infinite processes leading to differentiability in the complement of a point*, Differential and Combinatorial Topology, (A Syposium in honor of M. Morse), Princeton Univ. Press, Princeton, N. J., 1965. MR**180983****9.**R. H. Szczarba,*Whithead torsion and h-cobordism*, Topology Seminar Wisconsin, 1965, pp. 211-216; Annals of Mathematics Studies, Princeton Univ. Press, Princeton, N. J., 1966.

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1967-11856-1