COMPACTIFICATION OF STRONGLY COUNTABLE DIMENSIONAL SPACES

BY ARLO W. SCHURLE

Communicated by R. H. Bing, May 22, 1967

In this paper all spaces, including compactifications, are separable metrizable. Recall the following definitions. A space X is strongly countable dimensional if X is a countable union of closed finite-dimensional subsets. X is a $G_δ$ space if X is a $G_δ$-set in each space in which it is topologically embedded. A space Y is a pseudo-polytope if $Y = Σ_1 ∪ Σ_2 ∪ \cdots$, where each $Σ_i$ is a simplex, $Σ_i \cap Σ_j$ is either empty or a face of both $Σ_i$ and $Σ_j$, and $\text{diam } Σ_i → 0$ as $i → ∞$. The term map always denotes a continuous function. Other notation is as in [3] and [8].

In [5] Lelek proved that every $G_δ$-space X has a compactification dX such that $dX \setminus X$ is a pseudo-polytope. He then raised the question of whether every strongly countable dimensional $G_δ$ space X has a strongly countable dimensional compactification. This paper answers that question in the affirmative. We first state some preliminary propositions.

Proposition 1. Let $M ⊂ X$ with $\dim M ≤ n$, and let $\{U_i \mid i = 1, 2, \cdots\}$ be a sequence of sets open in X and covering M. Then there is a sequence $\{V_i \mid i = 1, 2, \cdots\}$ of sets open in X and covering M such that $\text{ord} \{V_i \mid i = 1, 2, \cdots\} ≤ n + 1$ and such that $V_{k(n+1)+j} \subset U_{k+1}$ for $k = 0, 1, 2, \cdots$ and $j = 1, 2, \cdots, n + 1$.

Proof. The proof involves only a slight extension of the argument on page 54 of [2].

Proposition 2. Let G be an open subset of a totally bounded space Y, and let M_1, M_2, \cdots, M_r be relatively closed subsets of G with $\dim M_i = m_i < ∞$ for $i = 1, 2, \cdots, r$. Let $ε > 0$. Then there is a collection $\{G_i \mid i = 1, 2, \cdots\}$ such that $G = \bigcup_{i=1}^{∞} G_i$ and

(i) Each G_i is open in Y.

(ii) $\{G_i \mid i = 1, 2, \cdots\}$ is star-finite.

(iii) $\overline{G_i} \subset G$ for $i = 1, 2, \cdots$.

1 This paper was written in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
(iv) $\text{diam } G_i < \epsilon$ for $i = 1, 2, \ldots$ and $\text{diam } G_i \to 0$ as $i \to \infty$.

(v) $\text{ord} \{ G_i \mid G_i \text{ meets } M_1 \cup M_2 \cup \cdots \cup M_k \} \leq m_1 + 1 + m_2 + 1 + \cdots + m_k + 1$ for $k = 1, 2, \ldots, r$.

Proof. We sketch the proof of this proposition. From page 114 of [4] we get a collection $\{ G_i \mid i = 1, 2, \ldots \}$ satisfying (i)-(iv). Open covers satisfying (i)-(iv) and (v) for $k = 1, 2, \ldots, r$ are now defined inductively. By Proposition 1 there is a sequence $\{ V_i \mid i = 1, 2, \ldots \}$ of open sets covering M_i such that $\text{ord} \{ V_i \mid i = 1, 2, \ldots \} \leq m_1 + 1$ and $V_{k(n+i)+j} \subseteq G_{k+1}$ for $k = 0, 1, 2, \ldots$ and $j = 1, 2, \ldots, m_k + 1$. The collection $\{ V_i \mid i = 1, 2, \ldots \} \cup \{ G_i \mid G_i \text{ meets } M_i \} \mid i = 1, 2, \ldots \}$ then satisfies (i)-(iv) and (v) for $k = 1$.

Suppose $\{ G_i \mid i = 1, 2, \ldots \}$ covers G, satisfies (i)-(iv) and (v) for each $k = 1, 2, \ldots, n$. Let $C = M_1 \cup M_2 \cup \cdots \cup M_n$. By Proposition 1 there is a sequence $\{ V_i \mid i = 1, 2, \ldots \}$ of open sets covering $M_{n} \setminus C$ such that $\text{ord} \{ V_i \mid i = 1, 2, \ldots \} \leq m_n + 1$ and $V_{k(n+i)+j} \subseteq G_{k+1}$ for $k = 0, 1, 2, \ldots$ and $j = 1, 2, \ldots, m_{n+1} + 1$. The collection $\{ G_i \setminus (C \cup M_{n+1}) \mid i = 1, 2, \ldots \} \cup \{ V_i \mid i = 1, 2, \ldots \} \cup \{ G_i \mid G_i \text{ meets } C \}$ satisfies (i)-(iv) and (v) for each $k = 1, 2, \ldots, n + 1$. This completes inductive step and the sketch of the proof.

We are now in a position to prove the first theorem.

Theorem 1. Let C be a closed subset of a compact space Y, and let M_1, M_2, \ldots, M_r be closed subsets of Y with $\text{dim } M_i = n_i < \infty$ for $i = 1, 2, \ldots, r$. Let $\epsilon > 0$. Then there is an ϵ-map $f : Y \to \mathbb{R}^n$ such that $f(C) \cap f(Y \setminus C) = \emptyset$, $f \mid C$ is a homeomorphism, $f(Y \setminus C)$ is a countable polytope P, and $\text{dim } (M_i \setminus C) \leq m_i + 1 + m_{i+1} + \cdots + m_r$ for $i = 1, 2, \ldots, r$. Further, $P = \Sigma_1 \cup \Sigma_2 \cup \cdots$ where each Σ_i is a simplex and $\text{diam } \Sigma_i \to 0$ as $i \to \infty$.

Proof. We may assume that $Y \subseteq \mathbb{R}^n$ and that the first coordinate of each point of Y is zero. Let $\mathcal{G} = \{ G_i \mid i = 1, 2, \ldots \}$ be the open cover of $Y \setminus C$ given by Proposition 2 with $\text{diam } G_i < \epsilon/8$ for $i = 1, 2, \ldots$. For each i such that $G_i \neq \emptyset$ pick a point $g_i \in G_i$. Then pick points p_i with first coordinate greater than zero such that $d(p_i, g_i) < \min \{ 1/i, \epsilon/8 \}$ and such that $\{ p_i \mid i = 1, 2, \ldots \}$ is in general position. Let N be the collection of simplices spanned by finite subsets $\{ p_{i_1}, p_{i_2}, \ldots, p_{i_m} \}$ where $G_{i_1} \cap G_{i_2} \cap \cdots \cap G_{i_m} \neq \emptyset$. The points $\{ p_i \mid i = 1, 2, \ldots \}$ may be picked in such a way that N is a CW-polytope, and certainly $N \cap Y = \emptyset$. Also, $N = \Sigma_1 \cup \Sigma_2 \cup \cdots$ where each Σ_i is a simplex and $\text{diam } \Sigma_i \to 0$ as $i \to \infty$. Define $f' : Y \to \mathbb{R}^n$ by...
$f'(x) = \begin{cases} \sum_{i=1}^{\infty} d(x, Y \backslash G_i) p_i & \text{if } x \notin C, \\ \sum_{i=1}^{\infty} d(x, Y \backslash G_i) & \text{if } x \in C. \end{cases}$

It is not hard to show that f' is continuous, and that $d(z, f'(z)) < \epsilon/4$ for each $z \in Y$. Triangulate N into simplexes of diameter less than $\epsilon/4$. By a suitable induction, a map $f_i: f'(Y) \cap N \to N$ may be defined in such a way that $f'(y)$ and $f_if'(y)$ are in the same simplexes and $f_i(f'(Y) \cap N)$ is a subpolytope P of N. The map $f: Y \to I^\omega$ defined by

$$f(z) = \begin{cases} z & z \in C, \\ f_if'(z) & z \in Y \backslash C \end{cases}$$

is then an ϵ-map such that $f(C) \cap f(Y \backslash C) = \emptyset$, $f|C$ is a homeomorphism, and $f(Y \backslash C)$ is the desired polytope P. Finally, let $y \in M_i \backslash C$. By the conditions on the cover \mathcal{G}, y is in at most $m_1 + 1 + m_2 + 1 + \cdots + m_i + 1$ elements of \mathcal{G}. Thus $f'(y)$, and hence also $f_if'(y)$, is in a simplex of dimension not greater than $m_1 + 1 + m_2 + 1 + \cdots + m_i$. Since P is a countable polytope, $\dim f(M_i \backslash C) \leq m_1 + 1 + m_2 + 1 + \cdots + m_i$. Q.E.D.

Theorem 1 now enables us to prove our main theorem.

Theorem 2. Let X be a strongly countable dimensional G_δ space. Then there is a strongly countable dimensional compactification dX of X such that $dX \backslash X$ is a pseudo-polytope.

Proof. Let $X = F_1 \cup F_2 \cup \cdots$ where F_i is closed and dim $F_i = m_i < \infty$ for $i = 1, 2, \ldots$. By a result of Hurewicz [1] there is a compactification cX of X such that dim $\overline{F_i}^c = m_i$ for $i = 1, 2, \ldots$. Let $n_i = m_1 + 1 + m_2 + 1 + \cdots + m_i$. Since X is a G_δ space, $cX \backslash X = Y_1 \cup Y_2 \cup \cdots$ where each Y_i is compact and $Y_i \subseteq Y_{i+1}$ for $i = 1, 2, \ldots$. Let $Y_0 = \emptyset$. By Theorem 1 there is a $1/i$-map $f_i: Y_i \to I^\omega$ such that $f_i(Y_{i-1}) \cap f_i(Y_i \backslash Y_{i-1}) = \emptyset$, $f_i|Y_{i-1}$ is a homeomorphism, $f_i(Y_i \backslash Y_{i-1})$ is a countable polytope P, and dim $f_i(\overline{F_i}^c \cap (Y_i \backslash Y_{i-1})) \leq n_k$ for $k = 1, 2, \ldots, i$.

Decompose cX into sets $f_i^{-1}(z)$ for $z \in f_i(Y_i \backslash Y_{i-1})$ and into individual points $x \in X$. Let the quotient space be dX and let $f: cX \to dX$ be the quotient map. It may be shown that the decomposition of cX is upper semicontinuous, so that f is a closed map. Hence dX is a
compactification of X. Furthermore, it is easily shown that there is a uniformly continuous homeomorphism $g_i: f_i(Y_i \setminus Y_{i-1}) \to f(Y_i \setminus Y_{i-1})$. Since $f_i(Y_i \setminus Y_{i-1})$ is a countable polytope for $i=1, 2, \ldots$, $dX \setminus X$ is a pseudo-polytope.

To show that dX is strongly countable dimensional it is enough to show that F_{dX} is strongly countable dimensional for $i=1, 2, \ldots$. Fix a positive integer k. Since f is a closed map, $F_{dX} = f(F_kX) = F_k \cup \bigcup_{i=1}^n f(F_kX \cap (Y_i \setminus Y_{i-1}))$. Also, $f(F_kX \cap Y_{k-1}) \subset f(cX \setminus X) = dX \setminus X$, so $f(F_kX \cap Y_{k-1})$ is strongly countable dimensional. Let $C_n = \bigcup_{j=1}^n f(F_kX \cap (Y_j \setminus Y_{j-1}))$ for $n=k, k+1, \ldots$ and let $D_k = \bigcup_{j=1}^n C_j$. Each C_j is closed in D_k. Further, $\dim C_k = \dim f(F_kX \cap (Y_k \setminus Y_{k-1})) \leq n_k$. Suppose $\dim C_i \leq n_k$. Then $C_{i+1} = C_i \cup f(F_kX \cap (Y_{i+1} \setminus Y_i))$, C_k is closed in C_{i+1}, and $\dim f(F_kX \cap (Y_{i+1} \setminus Y_i)) \leq n_k$, so $\dim C_{i+1} \leq n_k$. Therefore $\dim D_k \leq n_k$, and $\dim D_k \cup F_k \leq n_k + m_k + 1$. $D_k \cup F_k$ is open in F_{dX}, so by Proposition 2 $D_k \cup F_k = \bigcup_{i=1}^{m_k} G_{ki}$, where $G_{ki} \subset D_k \cup F_k$ for $i=1, 2, \ldots$. Hence $\dim G_{ki} \leq n_k + m_k + 1$, and F_{dX} is strongly countable dimensional. Q.E.D.

Sklyarenko gives an example in [9] which shows that being a G_δ space is a necessary hypothesis in Theorem 2.

BIBLIOGRAPHY

University of Kansas