PROOF. Let \(G = \sum \{ G_n | n \in J \} \) where \(G_n \) is solvable of radical class \(n \). Then \(G \in \mathcal{B} \) and has radical class \(\omega \). Let \(H = \prod \{ H_k | k \in J, H_k \cong G \} \). \(H \) has a subgroup satisfying the hypothesis of Theorem 3. Hence \(H \in \mathcal{B} \). Consequently, \(H \in \mathcal{B} \).

Classes of groups satisfying the conditions of Theorems 4 and 5 include the classes \(SN^*, SI^* \), subsolvable and polycyclic.

BIBLIOGRAPHY

UNIVERSITY OF KANSAS

ALGEBRAIZATION OF ITERATED INTEGRATION ALONG PATHS

BY KUO-TSAI CHEN

Communicated by Saunders Mac Lane June 12, 1967

If \(\Omega \) is the vector space of \(C^\infty \) 1-forms on a \(C^\infty \) manifold \(M \), then iterated integrals along a piecewise smooth path \(\alpha: [0, l] \rightarrow M \) can be inductively defined as below:

For \(r \geq 2 \) and \(w_1, w_2, \ldots, \in \Omega \),

\[
\int_{\alpha} w_1 \cdot \cdot \cdot w_r = \int_0^1 \left(\int_{\alpha_t} w_1 \cdot \cdot \cdot w_{r-1} \right) w_r (\alpha(t), \alpha'(t)) dt
\]

where \(\alpha_t = \alpha| [0, t] \). (See [3].)

This note is based on the following algebraic properties of the iterated integration:

(a) \((\int_{\alpha} w_1 \cdot \cdot \cdot w_r) (\int_{\alpha} w_{r+1} \cdot \cdot \cdot w_{r+s}) = \sum \int_{\alpha} w_1 \cdot \cdot \cdot w_{r+s} \) summing over all \((r,s)\)-shuffles, i.e. those permutations \(\sigma \) of \(\{ 1, \ldots, r+s \} \) with \(\sigma^{-1}(1) < \cdots < \sigma^{-1}(r), \ \sigma^{-1}(r+1) < \cdots < \sigma^{-1}(r+s) \).

(b) If \(\phi = \alpha(0) \) and if \(f \) is any \(C^\infty \) function on \(M \), then

\[
\int_{\alpha} f w = \int_{\alpha} (df) w + f(\phi) \int_{\alpha} w.
\]

\(^1\text{The work has been partially supported by the National Science Foundation under Grant NSF-GP-5423.}\)
(c) If β is a piecewise smooth path starting from the end point of α, then
\[
\int_{\alpha} w_1 \cdots w_r = \int_{\beta} w_1 \cdots w_r + \int_{\alpha} w_1 \int_{\beta} w_2 \cdots w_r + \cdots + \int_{\alpha} w_1 \cdots w_r.
\]

The author wishes to thank Professor S. Mac Lane for valuable suggestions.

1. Let K be a commutative unitary ring and Ω a K-module. Elements of Ω will be denoted by w, w_1, w_2, \cdots. Let $T(\Omega) = \oplus_{r \geq 0} T^r(\Omega)$ be the tensor K-algebra based on Ω. For $u, v \in T(\Omega)$, we shall write $uv = u \otimes v$.

Define the shuffle multiplication \circ of $T(\Omega)$ by $(w_1 \cdots w_r) \circ (w_{r+1} \cdots w_{r+s}) = \sum w_{r(1)} \cdots w_{s(r+s)}$ summing over all (r, s)-shuffles σ. Under the shuffle multiplication, $T(\Omega)$ becomes a commutative unitary K-algebra denoted by $Sh(\Omega)$. (See [6].) Moreover $Sh(\Omega)$ has a comultiplication Δ given by
\[
\Delta(w_1 \cdots w_r) = \sum_{0 \leq i \leq r} (w_1 \cdots w_i) \otimes (w_{i+1} \cdots w_r).
\]

Here we set $w_1 \cdots w_r = 1$ when $r = 0$. Let $\epsilon \in \text{Hom}_K(T(\Omega), K)$ be such that $\epsilon 1 = 1$ and $\epsilon T^r(\Omega) = \{0\}$ for $r \geq 1$. With the comultiplication Δ and the counit ϵ, $Sh(\Omega)$ is a Hopf K-algebra which may be taken as a dualization of the tensor (Hopf) algebra with the diagonal map as comultiplication.

2. For any commutative unitary K-algebra A, it will be required that the canonical map $K \to A$ is injective. For any A-module Ω, it will be required that $1w = w$. We say that $d \in \text{Hom}_K(A, \Omega)$ is a differentiation (of A) if $d(fg) = gdf + fdg$, $\forall f, g \in A$. If A' is also a commutative unitary K-algebra, denote by $\text{Alg}(A, A')$ the set of morphisms $A \to A'$ of unitary K-algebras.

Denote by \mathcal{D} the category of "pointed" differentiations of K-algebras: The objects of \mathcal{D} are pairs (d, p), where $d : A \to \Omega$ is a differentiation and $p \in \text{Alg}(A, K)$. If (d', p') with $d' : A' \to \Omega'$ is also an object of \mathcal{D}, the set of morphisms $(d, p) \to (d', p')$ will be denoted by $\text{Diff}(d, p; d', p')$ which consists of the pairs $(\phi, \delta), \phi \in \text{Alg}(A, A'), \delta \in \text{Hom}_K(\Omega, \Omega')$ such that $\delta d = d' \delta, \delta(fw) = (\delta f)(\delta w), \forall f \in A, w \in \Omega$, and $p = p' \delta$.
3. For any K-module Ω, one may regard $\text{Sh}(\Omega) \otimes \Omega$ as an $\text{Sh}(\Omega)$-module. Define $\delta = \delta(\Omega): \text{Sh}(\Omega) \to \text{Sh}(\Omega) \otimes \Omega$ such that $\delta 1 = 0$ and $\delta(w_1 \cdots w_r) = (w_1 \cdots w_{r-1}) \otimes w_r, r \geq 1$. Then δ is a surjective differentiation, and $\text{Sh}(\Omega) = \ker \delta \oplus \ker \delta$. Write $\epsilon = \epsilon(\Omega)$. The pair (δ, ϵ) can be characterized by the next theorem.

Theorem 1. Let (d', p') with $d': A' \to \Omega'$ be an object of \mathcal{D} such that d' is surjective and $A' = \ker d' \oplus \ker p'$. Then, given any $\theta \in \text{Hom}_K(\Omega, \Omega')$, there exists a unique $(\tilde{\theta}, \hat{\theta}) \in \text{Diff}(\delta, \epsilon; d', p')$ such that $\theta = \tilde{\theta} + \hat{\theta}$, where $\nu: \Omega \to \text{Sh}(\Omega) \otimes \Omega$ is given by $\nu(w) = 1 \otimes w$.

4. An ideal J of A is said to be a d-ideal if $dJ = AdJ + J$. If J is a d-ideal, then d induces a differentiation $d_J: A/J \to \Omega/dJ$.

Proposition. Let $p \in \text{Alg}(A, K)$. If $I = I(d, p)$ is the K-submodule of $\text{Sh}(\Omega)$ generated by $u(fw)v - (u \circ df)v - (pf)uv, \forall u, v \in \text{Sh}(\Omega), w \in \Omega, f \in A$, then I is the smallest δ-ideal of $\text{Sh}(\Omega)$ that contains all $fw - (df)w - (pf)w$.

It follows that δ induces a surjective differentiation $\Delta = \Delta(d, p): \text{Sh}(\Omega) / I \to \text{Sh}(\Omega) \otimes \Omega / \delta I$. On the other hand, ϵ induces $E = E(d, p) \in \text{Alg}(\text{Sh}(\Omega) / I, K)$ such that $\text{Sh}(\Omega) / I = \ker \Delta \oplus \ker E$. The pair (Δ, E) can be characterized by the next theorem.

Theorem 2. Let $$(\tilde{\chi}, \hat{\chi}) = (\tilde{\chi}(d, p), \hat{\chi}(d, p)) \in \text{Diff}(d, p; \Delta, E)$$ be given by $\tilde{\chi}f = pf + df + I, \forall f \in A$, and $\hat{\chi}w = 1 \otimes w + \delta I$. If (d', p') is as given in Theorem 1, then, for any $(\tilde{\theta}, \hat{\theta}) \in \text{Diff}(d', p'; d', p')$, there exists one unique $(\tilde{\Theta}, \hat{\Theta}) \in \text{Diff}(\Delta, E; d', p')$ such that $(\tilde{\theta}, \hat{\theta}) = (\tilde{\Theta}, \hat{\Theta})$.

5. **Definition.** A d-path from p is an element $\alpha \in \text{Alg}(\text{Sh}(\Omega), K)$ such that $\alpha(I) = 0$. The end point of α is $q \in \text{Alg}(A, K)$ given by $qf = pf + \alpha(df), \forall f \in A$.

Recall that ξ is the comultiplication of $\text{Sh}(\Omega)$. For $\alpha, \beta \in \text{Alg}(\text{Sh}(\Omega), K)$, define $\alpha \beta = \alpha \otimes \beta) \xi$. Then $\alpha \beta = \epsilon \alpha = \alpha$. It can be shown that $\text{Alg}(\text{Sh}(\Omega), K)$ is a group under the above multiplication.

Theorem 3. If α and β are d-paths from p to q and from q to q' respectively, then $\alpha \beta$ is a d-path from p to q'; and α^{-1} is a d-path from q to p.

6. We say that A is d-connected if, for any $p, q \in \text{Alg}(A, K)$, there exists a d-path from p to q.

Proposition. If A is d-connected and if $p, q \in \text{Alg}(A, K)$, then $(\Delta(d, p), E(d, p)) \cong (\Delta(d, q), E(d, q))$ in the category \mathcal{D}.
PROPOSITION. If $\text{Alg}(A, K)$ and $\text{Alg}(A', K)$ are both nonempty, then $A \oplus A'$ is not $(d \oplus d')$-connected.

There is a partial converse to the above assertion which states that if $\text{Alg}(A, K)$ is the disjoint union of two nonempty sets such that there exists no d-path with its initial point in one of the sets and its end point in the other, then, under reasonable conditions, A is non-trivially imbedded in a direct sum.

PROPOSITION. If A is d-connected with nonempty $\text{Alg}(A, K)$ and if d is surjective, then A is a d-tree, i.e. A has no closed d-path other than e.

BIBLIOGRAPHY

STATE UNIVERSITY OF NEW YORK AT BUFFALO AND UNIVERSITY OF ILLINOIS