Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Immersions of $G$-manifolds, $G$ finite


Author: G. S. Wells
Journal: Bull. Amer. Math. Soc. 74 (1968), 130-132
DOI: https://doi.org/10.1090/S0002-9904-1968-11906-8
MathSciNet review: 0220301
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Haefliger and V. Poenaru, La classification des immersions combinatoires, Publ. Math. Inst. Hautes Etudes Sci. 23 (1964), 651-67. MR 172296
  • 2. J. F. P. Hudson, Extending piecewise linear isotopies, Proc. London Math. Soc. (3) 16 (1966), 651-68. MR 202147
  • 3. J. F. P. Hudson and E. C. Zeeman, On combinatorial isotopy,Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 69-94. MR 163318
  • 4. J. F. P. Hudson, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719-45. MR 166790
  • 5. C. P. Rourke and B. J. Sanderson, Block bundles, Bull. Amer. Math. Soc. 72 (1966), 1036-1039. MR 214079
  • 6. R. Thorn, La classification des immersions d'après Smale, Seminaire Bourbaki, December 1957, Sécréteriat Mathématique, Paris, 1958. MR 105693
  • 7. A. Wasserman, Morse theory for G-manifolds, Bull. Amer. Math. Soc. 71 (1965), 384-8. MR 174064
  • 8. E. C. Zeeman, Notes from a seminar on combinatorial topology, Inst. Hautes Etudes Sci., Paris, 1963.
  • 9. J. H. Whitehead, On involutions of spheres, Ann. of Math. (2) 66 (1957), 27-29. MR 88732


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1968-11906-8

American Mathematical Society