Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Some homotopy of stunted complex projective space


Author: Robert E. Mosher
Journal: Bull. Amer. Math. Soc. 74 (1968), 179-183
DOI: https://doi.org/10.1090/S0002-9904-1968-11930-5
MathSciNet review: 0219067
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. H. Imanishi, Unstable homotopy groups of classical groups (odd primary components) (to appear). MR 225343
  • 2. M. A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169. MR 113237
  • 3. H. Matsunaga, The homotopy groups π=3, 4, and 5, Mem. Fac. Sci, Kyushu Univ. Ser. A 15 (1961), 72-81.
  • 4. H. Matsunaga, On the groups π, Mem. Fac. Sci. Kyushu Univ. Ser. A 16 (1962), 68-74.
  • 5. H. Matsunaga, Applications of functional cohomology operations to the calculus of π 7, n≧4, Mem. Fac. Sci. Kyushu Univ. Ser. A 17 (1963), 29-62.
  • 6. R. E. Mosher, Some stable homotopy of complex projective space, Topology (to ppear). MR 227985
  • 7. M. Rothenberg, The J functor and the nonstable homotopy groups of the unitary groups, Proc. Amer. Math. Soc. 15 (1964), 264-271. MR 160215
  • 8. H. Todo, A topological proof of the theorems of Bott and Borel-Kirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Kyoto 32 (1959), 109-119. MR 108790
  • 9. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton, N. J., 1962. MR 143217


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1968-11930-5

American Mathematical Society