A GAME WITH NO SOLUTION

W. F. LUCAS

Communicated by R. Creighton Buck, November 1, 1967

1. Introduction. In 1944 von Neumann and Morgenstern [2] introduced a theory of solutions for n-person games in characteristic function form. The main mathematical question concerning their model is whether every game has at least one solution. This announcement describes a ten-person game which has no solution. The essential definitions for an n-person game will be reviewed briefly before the particular example is given. The proof that the game has no solution will then be sketched; a detailed proof will be published elsewhere.

2. Definitions. An n-person game is a pair \((N, v)\) where \(N = \{1, 2, \ldots, n\}\) is the set of players and \(v\) is a characteristic function on \(2^N\), i.e., \(v\) assigns the real number \(v(S)\) to each subset \(S\) of \(N\) and \(v(\emptyset) = 0\). The set of imputations is

\[
A = \left\{ x : \sum_{i \in N} x_i = v(N) \text{ and } x_i \geq v(\{i\}) \text{ for all } i \in N \right\}
\]

where \(x = (x_1, x_2, \ldots, x_n)\) is a vector with real components. For any \(X \subset A\) and nonempty \(S \subset N\), define \(\text{Dom}_S X\) to be the set of all \(x \in A\) such that there exists a \(y \in X\) with \(y_i > x_i\) for all \(i \in S\) and with \(\sum_{i \in S} y_i \leq v(S)\). Let \(\text{Dom} X = \bigcup_{S \subset N} \text{Dom}_S X\). Also let \(\text{Dom}^{-1} X\) be the set of all \(y \in A\) such that there exists \(x \in X\) with \(x \in \text{Dom} \{y\}\). A subset \(K\) of \(A\) is a solution if \(K \cap \text{Dom} K = \emptyset\) and \(K \cup \text{Dom} K = A\). If \(X \subset A\) and \(K \subset X\), then \(K'\) is a solution for \(X\) if \(K' \cap \text{Dom} K' = \emptyset\) and \(K' \cup \text{Dom} K' \supset X\). The core of a game is

\[
C = \left\{ x \in A : \sum_{i \in S} x_i \geq v(S) \text{ for all } S \subset N \right\}.
\]

For any solution \(K\), \(C \subset K\) and \(K \cap \text{Dom} C = \emptyset\).

A characteristic function \(v\) is superadditive if \(v(S_1 \cup S_2) \geq v(S_1) + v(S_2)\) whenever \(S_1 \cap S_2 = \emptyset\). The game listed below does not have a superadditive \(v\) as assumed in the classical theory. However, it is equivalent solutionwise to a game with a superadditive \(v\). (See Gillies [1, p. 68].)

1 This research is sponsored by the United States Air Force under Project RAND.
3. Example. Consider the game \((N, v)\) where \(N = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\) and \(v\) is given by:

\[
\begin{align*}
v(N) &= 5, \quad v(\{1, 3, 5, 7, 9\}) = 4, \\
v(\{1, 2\}) &= v(\{3, 4\}) = v(\{5, 6\}) = v(\{7, 8\}) = v(\{9, 10\}) = 1, \\
v(\{3, 5, 7, 9\}) &= v(\{1, 5, 7, 9\}) = v(\{1, 3, 7, 9\}) = v(\{5, 6\}) = 3, \\
v(\{3, 5, 7\}) &= v(\{1, 5, 7\}) = v(\{1, 3, 7\}) = 2, \\
v(\{3, 5, 9\}) &= v(\{1, 5, 9\}) = v(\{1, 3, 9\}) = 2, \\
v(\{1, 4, 7, 9\}) &= v(\{3, 6, 7, 9\}) = v(\{5, 2, 7, 9\}) = 2, \\
v(S) &= 0 \quad \text{for all other} \ S \subset N.
\end{align*}
\]

For this game

\[
A = \left\{ x : \sum_{i \in N} x_i = 5 \text{ and } x_i \geq 0 \text{ for all } i \in N \right\}.
\]

One can also show that \(C\) is the convex hull of the six imputations:

\[
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0), \quad (0, 1, 1, 0, 1, 0, 1, 0, 1, 0), \\
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0), \quad (1, 0, 1, 0, 1, 0, 1, 0, 1, 0), \quad (1, 0, 1, 0, 1, 0, 1, 0, 1, 0), \quad \text{and} \\
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0).
\]

4. Outline of proof. Consider the following subsets of \(A\):

\[
B = \left\{ x \in A : x_1 + x_2 = x_3 + x_4 = x_5 + x_6 = x_7 + x_8 = x_9 + x_{10} = 1 \right\},
\]

\[
E_i = \left\{ x \in B : x_i = 1, x_i < 1, x_7 + x_9 < 1 \right\},
\]

\[
E = \bigcup_{i=1}^{3} E_i, \quad \text{and} \quad E_1 = \bigcup_{(p, q) = (7, 9)} \left\{ x \in B : x_p = 1, x_q < 1, x_5 + x_6 + x_8 \geq 2, x_1 + x_7 + x_9 \geq 2, x_3 + x_4 \geq 2 \right\}
\]

\[
\left\{ x \in B : x_7 + x_9 = 1 \right\} \cup \left\{ x \in B : x_1 + x_3 + x_5 = 1 \right\} - C,
\]

where \((i, j, k) = (1, 3, 5), (3, 5, 1), \text{and} (5, 1, 3)\); and \((p, q) = (7, 9)\) and \((9, 7)\). One can verify that the subsets \(A - B, B - (C \cup E \cup F)\), \(C, E, \text{and} F\) form a partition of \(A\).

To prove that this game has no solution it is sufficient to prove that

\[
(1) \ \text{Dom } C \supset [A - B] \cup [B - (C \cup E \cup F)], \\
(2) \ E \cap \text{Dom } (C \cup F) = \emptyset, \text{ and} \\
(3) \ \text{there is no solution for } E.
\]

One can prove (1) and (2) by checking various subsets \(S\) of \(N\). In fact, one can prove in addition that \(\text{Dom } C = A - (C \cup E \cup F)\), and
\[F \cap \text{Dom}(C \cup E \cup F) = \emptyset; \] and thus \(C \cup F \) is contained in every solution.

Now consider the region \(E \). One can check that \(E_i \cap \text{Dom}_{\emptyset} E = \emptyset \) for all \(S \) except \(\{i, r, 7, 9\} \), and

\[E_i \cap \text{Dom}_{\{i, r, 7, 9\}}(E_i \cup E_k) = \emptyset \]

where \((i, r, k) = (1, 4, 5), (3, 6, 1), \) and \((5, 2, 3) \). Thus the "Dom" pattern in \(E \) is cyclic as illustrated by the diagram:

\[E_5 \xrightarrow{\{3, 6, 7, 9\}} E_2 \xrightarrow{\{1, 4, 7, 9\}} E_1 \xrightarrow{\{5, 2, 7, 9\}} E_6. \]

To prove (3), assume that \(K'(\neq \emptyset) \) is a solution for \(E \) and pick any \(y \in K' \). Using the symmetry in \(E \), one can assume \(y \in E_5 \). Define

\[G_i(y) = \{x \in E_i: x_7 > y_7, x_9 > y_9, x_k + x_r + x_7 + x_9 \leq 2\} \]

where \((i, k, r) = (1, 5, 2), (3, 1, 4), \) and \((5, 3, 6) \). Then one can verify that \(E \cap \text{Dom}^{-1}(y) = G_6(y) \), and so \(K' \cap G_6(y) = \emptyset \). However, \(E \cap \text{Dom}^{-1} G_5(y) = G_1(y) \), and so

\[K' \cap G_1(y) \neq \emptyset. \]

On the other hand, \(G_6(y) \cap \text{Dom}(E_6 - G_6(y)) = \emptyset \), and so \(G_6(y) \subset K' \). However, \(G_1(y) \subset \text{Dom} G_5(y) \), and so

\[K' \cap G_1(y) = \emptyset \]

which gives a contradiction. Therefore, there is no solution \(K' \) for \(E \).

5. Acknowledgment. The author is grateful to L. S. Shapley for many helpful discussions.

References

The RAND Corporation, Santa Monica, California