REPRESENTATION OF F-RINGS

BY JOHN DAUNS

Communicated by R. S. Pierce, October 16, 1967

Consider a lattice ordered algebra A with identity over the rationals \mathbb{Q}; A is called an f-ring if $a \land b = 0$, $c \geq 0$, implies that $ca \land b = ac \land b = 0$. The maximal l-ideals \mathcal{M} of A form a compact Hausdorff space in the hull-kernel topology. If A is archimedean, i.e. a so called Φ-algebra, then it is known [5] that A is isomorphic to a subalgebra of the partial algebra $D(\mathcal{M})$ of all continuous functions f: $\mathcal{M} \to \mathbb{R} \cup \{\pm \infty\}$ which are finite on a dense open set. The fact that there is a sizable theory of Φ-algebras [5], [6], [10] with no counter part for the more general class of f-rings may partly be due to the existence of this representation, $A \subseteq D(\mathcal{M})$ for Φ-algebras, and a lack of such a representation in the nonarchimedean case. This latter representation has the defect that it is not onto. Even when $D(\mathcal{M})$ is an algebra, A need not be all of $D(\mathcal{M})$. Our objective is to give a representation which not only corrects this defect, but also is applicable to a wider class of f-rings. This new representation will show that the "f" in the term "f-ring" is well justified.

Define $E = \bigcup \{A/M | M \in \mathcal{M}\}$; $\pi: E \to \mathcal{M}$, $\pi^{-1}(M) = A/M$. Each $a \in A$ gives a map $\delta: \mathcal{M} \to E$, $\delta(M) = a + M$. For any subset $A_1 \subseteq A$, set $\hat{A}_1 = \{\delta | a \in A_1\}$. In order that $A \cong \hat{A}$, the condition (A) will be assumed throughout to hold

(A) $\cap \mathcal{M} = \{0\}$.

Appropriate topologies can be introduced in E and \mathcal{M} making π into a structure which generalizes sheaves and fiber bundles—a so called field. (For a complete theory of fields, see [3].) The topologies on E and \mathcal{M} are unique in a certain well-defined sense. Let $\Gamma(\mathcal{M}, E)$ be the l-group of all continuous cross sections $\sigma: \mathcal{M} \to E$ with $\pi \circ \sigma$ the identity on \mathcal{M}. Then π is continuous and $\hat{A} \subseteq \Gamma(\mathcal{M}, E)$ is an l-subgroup. Let A^* be the subalgebra $A^* = \{a \in A | |a| < r_1, \text{some } 0 < r \in \mathbb{Q}\}$. Then $\Gamma(\mathcal{M}, E)^* = \{\sigma \in \Gamma(\mathcal{M}, E) | |\sigma| < \delta \text{ for some } a \in A^*\}$ is a convex l-subgroup of $\Gamma(\mathcal{M}, E)$.

Although for ease of exposition, A here is the additive group of a ring, the multiplicative structure of A has not been used thus far. The above construction will be carried out more generally for an arbitrary l-group A and any set of prime subgroups \mathcal{M} with $\cap \mathcal{M} = \{0\}$.

1 Research partially supported by NSF Grant GP6219.
If M is not normal in A, then A/M is not a group but merely a right coset space.

Returning now to our previous assumptions, the algebra A is an additive topological group with $\{a \in A \mid |a| < r\}$, $0 < r \in \mathbb{Q}$, as zero neighborhoods. It is possibly non-Hausdorff. If A is complete in this uniform structure, it will be said to be uniformly closed. Under obvious pointwise operations, $\Gamma(M, E)$ is an ℓ-group; \hat{A} is said to be uniformly dense in $\Gamma(M, E)$ if for any $\sigma \in \Gamma(M, E)$ and any $0 < r \in \mathbb{Q}$, there is an $a \in A$ with $|a - \sigma| < r 1$. Since we are interested in cases when $\hat{A} = \Gamma(M, E)$, or when at least \hat{A} is uniformly dense in $\Gamma(M, E)$, besides the assumption (A) various of the following hypotheses will have to be imposed:

(B) A^* is closed under bounded inversion, i.e. if $1 < a \in A^*$, then $1/a \in A$.
(B') A is closed under bounded inversion.
(C) A is uniformly closed.

Since $A^* \subseteq C(M)$, the ring of real continuous functions, (A) and (C) imply (B).

For representation purposes it is important that the algebra has the property described in the next definition.

1. DEFINITION. A subset A_1 of A contains positive bounded partitions of identity on M, if for any open cover $M = U_1 \cup \cdots \cup U_n$, there are $e_j \in A_1$ satisfying $e_j \subseteq \cap M \setminus U_j$; $0 \leq e_j \leq 1$ for $j = 1, \cdots, n$; and $1 = e_1 + \cdots + e_n$.

The proof of the next lemma is obtained by using the hull-kernel topology together with the lattice properties of A.

2. LEMMA. If conditions (A) and (B) hold, then A^* contains positive bounded partitions of identity on M.

It should be noted that A may be noncommutative even if A^* is abelian.

3. LEMMA. If (A) and (B) hold, then the following conditions are all equivalent:
(i) A^* is archimedean;
(ii) A is Hausdorff;
(iii) E is Hausdorff.

The next proposition is not only needed to identify the fibers, but it is also of independent interest.

4. PROPOSITION. Consider any totally ordered f-ring A such that every $1 < a \in A$ has a two sided inverse in A. Let I be the set of invertible ele-
ments and define N as the set $N = \{ x \in A \mid |x| < i \text{ all } i \in I \}$. Then:

(i) N is a maximal ideal of A which is an l-ideal.
(ii) A/N is a totally ordered division ring.

Very easily describable necessary and sufficient conditions for embedding a rational f-algebra into a real f-algebra do not seem to be available (see [7, p. 351, 2.9] and [11]).

5. Corollary. If the f-ring A satisfies conditions (A) and (B'), then each A/M is a totally ordered division ring. Furthermore, A can be embedded in an f-algebra over the reals.

The previous lemmas are now used to obtain the main theorem.

6. Theorem. Suppose A is an f-algebra with identity over the rationals \mathbb{Q}. Define $A^\ast = \{ a \in A \mid |a| < r \text{ for some } r \in \mathbb{Q} \}$ and \mathcal{M} as the set of all maximal l-ideals of A. Assume that

(A) $\cap \mathcal{M} = \{ 0 \}$;
(B) $1 < a \in A^\ast \Rightarrow 1/a \in A^\ast$.

Let $\pi: E = \bigcup \{ A/M \mid M \in \mathcal{M} \} \rightarrow \mathcal{M}, \hat{A}^\ast, \hat{A}, \Gamma(\mathcal{M}, E)$, and $\Gamma(\mathcal{M}, E)^\ast$ be as in the introduction.

(i) There is a field π where \mathcal{M} has the hull-kernel topology. Each $A/M, M \in \mathcal{M}$, is a totally ordered integral domain. There are l-isomorphisms

$$A \rightarrow A \subseteq \Gamma(\mathcal{M}, E), \quad A^\ast \rightarrow A^\ast \subseteq \Gamma(\mathcal{M}, E)^\ast.$$

(ii) \hat{A} is uniformly dense in $\Gamma(\mathcal{M}, E)$.

Now assume conditions (A) and (C), where

(C) A is uniformly closed.

Then the following two assertions are valid:

(iii) $A^\ast \cong \hat{A}^\ast = C(\mathcal{M}) \hat{1} = \Gamma(\mathcal{M}, E)^\ast; E$ is Hausdorff.
(iv) $\hat{A} = \Gamma(\mathcal{M}, E)$.

By using Proposition 4 and imposing more hypotheses, we can obtain additional information in the above Theorem.

7. Corollary. With the same notation as in the previous theorem, assume (A) and (B'):

(B') $1 < a \in A \Rightarrow 1/a \in A$.

Then conclusions (i) and (ii) of the previous theorem hold. Furthermore, each $\pi^{-1}(M), M \in \mathcal{M}$, is a totally ordered division ring.

A converse theorem can also be formulated. One starts from a field $\pi: E \rightarrow \mathcal{M}$ over a compact Hausdorff space whose stalks are totally ordered integral domains. Then an appropriate subalgebra Λ, in
$\Delta \subseteq \Gamma(\mathcal{M}, E)$ is shown to be an f-algebra satisfying the algebraic hypotheses (A) and (B) of the previous theorem.

The full proofs of these results will appear elsewhere later.

REFERENCES

Tulane University