Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Representation of $F$-rings


Author: John Dauns
Journal: Bull. Amer. Math. Soc. 74 (1968), 249-252
DOI: https://doi.org/10.1090/S0002-9904-1968-11908-1
MathSciNet review: 0220647
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil Ci. 28 (1956), 41-69. MR 80099
  • 2. J. Dauns and K. H. Hofmann, The representation of biregular rings by sheaves, Math. Z. 91 (1966), 103-123. MR 186693
  • 3. J. Dauns and K. H. Hofmann, Representation of rings by sections, Mem. Amer. Math. Soc. (to appear). MR 247487
  • 4. M. Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 553-565. MR 153709
  • 5. M. Henriksen and D. G. Johnson, Archimedean lattice ordered algebras, Fund. Math. 50 (1961), 73-97. MR 133698
  • 6. M. Henriksen, J. R. Isbell and D. G. Johnson, Residue class fields, Fund. Math. 50 (1961), 107-117. MR 133350
  • 7. J. R. Isbell, Embedding two ordered rings in one ordered ring. Part I, J. Algebra (3) 4 (1966), 341-364. MR 207766
  • 8. D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163-215. MR 125141
  • 9. D. G. Johnson and J. E. Kist, Prime ideals in vector lattices, Canad. J. Math. 14 (1962), 517-528. MR 138566
  • 10. P. Nanzetta, Maximal lattice-ordered algebras of continuous functions (to appear). MR 232216
  • 11. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252. MR 32593
  • 12. R. S. Pierce, Radicals in function rings, Duke Math. J. 23 (1956), 253-261. MR 78958
  • 13. R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. No. 70, 1967. MR 217056


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1968-11908-1

American Mathematical Society