CONSTRUCTIONS ON LOW-DIMENSIONAL
DIFFERENTIABLE MANIFOLDS

BY VALENTIN POÉNARU

Communicated by William Browder, May 29, 1967

1. This note contains the statements of three theorems on low-dimensional differentiable manifolds (dimensions 3 and 4). The proofs, which use techniques partly connected to [1], will appear elsewhere.

We denote by \(M_n + (\phi) \) the manifold obtained by adding the handle of index \(\lambda \), \(D_\lambda \times D_{n-\lambda} \), via the embedding \(\phi: S_{n-1, \lambda} \times D_{n-\lambda} \to \partial M_n \), to \(M_n \). More generally, we shall use the following notation: If \(P_{n-1} \subseteq S_{n-1} = \partial D_n \) is a bounded submanifold and \(\psi: P_{n-1} \to M_n \) an embedding, we denote by \(M_n + (\psi) \), the space \(M_n \cup D_n \), where every \(x \in P_{n-1} \) is identified to \(\psi(x) \in M_n \). It is understood that, if \(\psi(P_{n-1}) \subseteq \partial M_n \), then \(M_n + (\psi) \) is a “usual” differentiable manifold, otherwise a “singular” one (see §2).

THEOREM 1. Let \(M_3 \) be a compact, differentiable, homotopy 3-disk. Then \(M_3 \times I \) is diffeomorphic to \(D_4 \) with handles of index 2 and 3 added:

\[
M_3 \times I = D_4 + (\phi_2) + \cdots + (\phi_3) + (\phi_1) + \cdots + (\phi_5).
\]

Hence, one can eliminate the handles of index 1 of \(M_3 \times I \) (compare with the similar procedure, in higher dimensions [2]).

In fact we obtain Theorem 1 from the slightly stronger:

THEOREM 1'. If \(M_3 \) is a compact, differentiable homotopy 3-disk, there exists an integer \(p = p(M_3) \) such that:

\[
(M_3 \# (S_2 \times I) \# \cdots \# (S_2 \times I)(p \text{ times})) \times I = D_4 + (\phi_2) + \cdots + (\phi_5).
\]

This together with some immersion theory, implies easily the main result from [1].

The next theorem is the main step in proving Theorem 1'. But in order to state it, we need some preparation.

2. We consider the 3-manifold \(T_p = (S_1 \times D_2) \# (S_1 \times D_2) \# \cdots \# (S_1 \times D_2) \) \((p \text{ times}) \) and its double \(2T_p = (S_1 \times S_2) \# (S_1 \times S_2) \# \cdots \# (S_1 \times S_2) \) \((p \text{ times}) \). \(\# \) means connected sum.) A family of \(p \) 2-by-2 disjoint embeddings \(\phi_i: S_1 \to T_p \) \((i = 1, \cdots, p) \) is called

\[^1\] This research has been supported by NSF Grant GP-6299.
"unknotted," if, after a diffeomorphism of T_p, the images become $(S_1 \times o) \cup (S_1 \times o) \cup \cdots \cup (S_1 \times o)$ (ρ times, o = center of D_2). Similarly, if $o \in S_2$, is some fixed point, a family of p, 2-by-2 disjoint embeddings $\psi_i: S_1 \rightarrow 2T_p$ $(i=1, \cdots, p)$ is called "unknotted" if after a diffeomorphism of $2T_p$, the images become $(S_1 \times o) \cup \cdots \cup (S_1 \times o)$ (ϕ times). (The difference between the two notions is illustrated by the Figures 1a, 1b, where "knotted" embeddings $S_1 \rightarrow T_1$ are presented, such that the composite embeddings $S_1 \rightarrow T_1 \subset 2T_1$ are unknotted. Figure 1b contradicts, unfortunately, the obvious conjecture suggested by Figure 1a.)

![Figure 1a](image1.png) ![Figure 1b](image2.png)

We consider now (compact) 3-manifolds with singularities. These will be compact spaces V_3 which are everywhere (bounded) differentiable manifolds, except for a finite number of compact neighborhoods W, which admit descriptions of the following type: We consider two embeddings $\phi, \psi: I \rightarrow S_2 = \partial D_2$, such that $\phi(I) \cap \psi(I)$ consists of exactly one point, with transversal intersection, and two thin tubular neighborhoods around them: $\Phi, \Psi: I \times I \rightarrow S_2 = \partial D_2$. $I \times I$ is assimilated to $I \times I \times o \subset \partial (I \times I \times I) = \partial D_3$ and then W is our original D_3 (target of ϕ, ψ) with two other copies of D_3 added along Φ, Ψ:

$$W = D_3 + (\Phi) + (\Psi) = D_3 + (\Psi) + (\Phi).$$

V_3 is "regular" except for a "singular" set $\sigma(V_3)$ which is a bounded 2-manifold, having as connected components various copies of D_2.

We consider resolutions (of singularities) for V_3, $\Pi: V'_3 \rightarrow V_3$ where V'_3 is a nonsingular 3-manifold, $\Pi^{-1}(x)$ has exactly 2 elements if $x \in \text{int } \sigma(V_3)$ and exactly 1 element if x is regular. (If $x \in \partial \sigma(V_3)$, as we shall see in a moment, $\Pi^{-1}(x)$ has one point in half the cases and two in the other half.) It is moreover understood that, if W is
as before, \(\Pi^{-1}(W) = W' \) is obtained by cutting the \(I \times I \times I \) corresponding to \(\Phi \), from \(D_3 + (\Psi) \) along \(\Phi^{-1}(\text{Image } \Phi \cap \text{Image } \Psi) \) (or the \(I \times I \times I \) corresponding to \(\Psi \), from \(D_3 + (\Phi) \)). So \(W' = S_1 \times D_3 \), and passing from \(W \) to \(W' \), Image \(\Phi \cap \text{Image } \Psi = I \times I \) "blows up" into \(\beta = \Phi^{-1}(\text{Image } \Phi \cap \text{Image } \Psi) + \Phi^{-1}(\text{Image } \Phi \cap \text{Image } \Psi) \), diffeomorphic to \(S_1 \times I \) (the first summand is in \(I \times I \times I \), the other in \(D_3 + (\Psi) \)). We say that \(\Phi \) (or \(\Psi \)) is specified in the resolution \(\Pi = V'_3 \to V_3 \). (One remarks that the two \(I \times I \times I = D_3 \) play a symmetric role in \(W \), but cannot be interchanged with the original \(D_3 \); this is easily seen by looking at the sheaf of local homology groups along \(\sigma(W) = \text{Image } \Phi \cap \text{Image } \Psi \).)

If \(\Phi \) is specified in the resolution \(\Pi : V'_3 \to V_3 \), as above, there exists a canonical embedding \(j : W' \to S_3 \) which is uniquely determined (up to isotopy) by the requirements that \(j(W') \) be unknotted and \(j(\beta) \) be contained in a nonsingular 2-disk of \(S_3 \).

Let us consider the category \(\mathcal{R} \) of resolutions \(\Pi : V'_3 \to V_3 \) (for all \(V'_3 \)'s) where the morphisms are given by commutative squares, having \(\Pi \) on the verticals and embeddings on the horizontals. Let us also consider the category \(\mathcal{C} \) consisting of triples \((M_4, j, M_3)\) where \(M_4 \) is a bounded differentiable 4-manifold, \(M_3 \) a (bounded) differentiable 3-manifold and \(j : M_3 \to \partial M_4 \) an embedding. Morphisms are again commutative squares having the \(j \)'s on the verticals and embeddings on the horizontals. We have:

Lemma. There exists a unique ("thickening") functor \(\Theta : \mathcal{R} \to \mathcal{C} \) such that, if \(\eta \in \mathcal{R} \) is \(\Pi : V'_3 \to V_3 \) then \(\Theta(\eta) = (\Theta_4(\eta), J(\eta), V'_3) \) and the following requirements are fulfilled:

(a) If \(V_3 \) is nonsingular (\(\sigma(V_3) = \emptyset \)) and \(\eta \) is the (only possible) resolution: identity: \(V'_3 \to V_3 \), then \(\Theta_4(\eta) = V_3 \times I \) and \(J(\eta) = V_3 \times o \cap \partial (V_3 \times I) = V_3 \times o + \partial V_3 \times I + V_3 \times 1 \).

(b) \(\Theta \) is compatible with the connected sum \(\# \) and, more generally, let \(V'_3 = o V'_3 + V_3 \), with \(o V'_3 \cap V_3 = M_2 \subset V_3 - \sigma(V_3) \) (a compact 2-manifold). If \(\eta = (\Pi : V'_3 \to V_3) \) is a resolution for \(V_3 \), \(M_2 \) can be lifted to a unique \(M'_2 \subset V'_3 \), and \(\eta \) can be restricted to resolutions \(\eta' \) and \(\eta \). By (a) and the functoriality of \(\Theta \) there exist well-defined embeddings \(M'_2 \times I \subset \partial \Theta_4(\eta) \) and \(M'_2 \times I \subset \partial \Theta_4(\eta) \) (coming from the corresponding \(j \)'s). \(\Theta_4(\eta) \) is obtained by pasting \(\Theta_4(\eta') \) and \(\Theta_4(\eta) \) together along \(M_2 \times I \), and \(j(\eta) \) in a similar way from \(j(\eta'), \theta(\eta) \).

(c) \(\Theta(W \# W) = (D_4, j : W' \to S_3 = \partial D_4, W') \) where \(W', W \) are as above, and \(j \) is the canonical embedding. (It is understood that \(\Theta(\eta) \) is determined only up to "isomorphism.")

This lemma is implicit in [1].
3. We are interested in 3-manifolds with singularities V_3, which admit the following description:

We consider T_{2p} and $2p$ differentiable embeddings $\phi^i: S_i \to T_{2p}$ ($i = 1, \ldots, 2p$) such that $\phi^i(S_i) \cap \phi^j(S_i) = \emptyset$ except for $\phi^{2k-1}(S_i) \cap \phi^{2k}(S_i)$ which consists of exactly 2 points, with transversal intersection ($k = 1, \ldots, p$).

We remark that $\phi^{2k-1}(S_i) \cup \phi^{2k}(S_i)$ contains exactly 4 simple circuits of ∂T_{2p} and, for each $k = 1, \ldots, p$, we consider a differentiable embedding $\psi^k: S \to \partial T_{2p} - \bigcup_{i} \phi^i(S_i)$, "parallel" to one of these 4 circuits. We assume that $\psi^i(S_i) \cap \psi^j(S_i) = \emptyset$. We consider some very thin tubular neighborhoods: Φ^i, $\Psi^j: S \times I \to \partial T_{2p} (i = 1, \ldots, 2p; j = 1, \ldots, p)$ of ϕ^i, ψ^j. $S \times I$ is assimilated to $(\partial D^2) \times I \subset \partial (D^2 \times I)$, and hence we can add $3p$ times $D^2 \times I$ along the Φ and Ψ's, to T_{2p}. We get in this way a 3-manifold with singularities

$$V_3 = T_{2p} + (\Phi^1) + \cdots + (\Phi^{2p}) + (\Psi^1) + \cdots + (\Psi^p).$$

We shall consider a resolution $\Pi: V'_3 \to V_3$ which specifies Φ^2, $\Phi^4, \ldots, \Phi^{2p}$.

We shall also consider, for each $k = 1, \ldots, p$ an embedding $\phi^{2k-1}: S_i \to \text{int} T_{2p}$, very close to ϕ^{2k-1}, and "parallel" to it.

Finally we denote by \overline{T}_{2p} the 3-manifold:

$$\overline{T}_{2p} = T_{2p} + (\partial T_{2p}) \times I$$

where $\partial T_{2p} = \partial T_{2p} \times \emptyset$.

With this we can state

Theorem 2. Let M_3 be a compact homotopy 3-disk. Then, for some $p = p(M_3)$, the differentiable manifold:

$$M_4^p = (M_3 \# (S_2 \times I) \# \cdots \# (S_2 \times I)(p \text{ times})) \times I$$

$$= (M_3 \times I) \# (S_2 \times D^2) \# \cdots \# (S_2 \times D^2)(p \text{ times})$$

can be described as follows:

There exists a V_3 as above, for which the following requirement is fulfilled:

(γ) The $2p$ embeddings $S_i \to 2\overline{T}_{2p}$:

$$S_1 \phi^{2k}, \phi^{2k-1} \to T_p \subset \overline{T}_{2p} \subset 2T_{2p} (k = 1, \ldots, p)$$

can be described as follows:

Moreover,

$$\Theta_4(\Pi: V'_3 \to V_3) = M_4^p \text{ (diffeomorphism).}$$
One remarks that the statement $M_3 = D_3$ is equivalent to $M_4^2 = D_4 \# (S_2 \times D_2) \# \cdots \# (S_2 \times D_2)$ (p times) (see [1]). This motivates

Theorem 3. Let V_3 be the singular 3-manifold described above, but such that the requirement (γ) is replaced by the stronger requirement (Γ):

(Γ) The $2p$ embeddings $S_1 \to \overline{T}_{2p}$:

$$S_1 \xrightarrow{\phi^{2k}, \phi^{2k-1}} T_{2p} \subset \overline{T}_{2p} \quad (k = 1, \ldots, p)$$

are unknotted.

Then:

$$\Theta_4(\Pi: V_4 \to V_3) = D_4 \# (S_2 \times D_2) \# \cdots \# (S_2 \times D_2)(p \text{ times})$$

(diffeomorphism).

Bibliography

Northeastern University