THE SOLUTION OF BOEN'S PROBLEM

BY ERNEST SHULT

Communicated by M. Suzuki, November 16, 1967

A finite p-group P is said to be p-automorphic if and only if it admits a group of automorphisms G which transitively permutes its elements of order p. A standing problem has been the proof of

$$C_1. \quad \text{p-automorphic p-groups of odd order are abelian.}$$

A number of authors have proved special cases of C_1 as well as special cases of more general propositions $[1, 2, 3, 5, 6, 7, 8]$. Both C_1 and all of the generalizations of it which have been considered in the literature follow from Theorem 1 which appears below.

In $[2]$ it is observed that if P is a smallest counterexample to C_1, then there is associated with P, an anticommutative (not necessarily associative) algebra A over $GF(p)$, whose dimension coincides with the number of elements in a minimal generating set of the p-automorphic group P. Further, if G is the hypothesized group of automorphisms of P, then G also acts as a group of automorphisms of A in such manner that both A and the Frattini-factor group of P are isomorphic as $GF(p)G$-modules. Accordingly, Kostrikin $[6]$ has introduced the notion of homogeneous algebra, i.e. a finite dimensional algebra A over a finite field $GF(q)$, which admits a group of automorphisms G, transitively permuting its nonzero elements. Such algebras enjoy two basic properties: (P_1) if q is odd, they are anticommutative $[6]$, and (P_2) left multiplication by an element induces a nilpotent transformation of A $[2]$. Then C_1 is a consequence of the proposition:

$$C_2. \quad \text{If A is an homogeneous algebra of odd characteristic then $A^2 = 0$.}$$

One may also define semi-p-automorphic p-groups (spa-groups) as finite p-groups admitting a group of automorphisms G which is transitive on the cyclic subgroups of order p. This carries with it the corresponding notion of spa-algebra, i.e. an anticommutative finite dimensional algebra A over $GF(q)$, admitting a group of automorphisms G transitive on the 1-dimensional subspaces of A. (Property P_2 holds for such an algebra, but P_1 must be hypothesized if q is exceeded by the dimension of A.) The following two conjectures have been considered in $[3, 7, 8]$: 268
THE SOLUTION OF BOEN'S PROBLEM

C3. Semi-p-automorphic p-groups of odd order are abelian.

C4. If A is a spa-algebra of odd characteristic, then $A^2 = 0$.

The following implications hold: $C_4 \Rightarrow C_3 \Rightarrow C_1$, $C_4 \Rightarrow C_2 \Rightarrow C_1$. All of these, however, are consequences of the following

Theorem 1. Let A be a finite dimensional algebra over $GF(q)$ and suppose G is a group of automorphisms of A which acts transitively on the 1-dimensional subspaces of A. Suppose also that $GF(q)$ contains more than two elements and that A has dimension greater than one. Then $A^2 = 0$ or A has no zero divisors.

The theorem differs from C_4 in that no hypothesis on anticommutativity is required, and that the result accommodates algebras over fields of characteristic 2.

In the discussion which follows, n will denote either the rank of a p-group, or else the dimension of the pertinent algebra. Similarly, G will denote the group of automorphisms (of a p-group or algebra) which satisfies the relevant transitivity condition. An easy result is that C_1 holds if G is cyclic [5]. In [1] and [2], C_1 is proved subject to the condition that either $n \leq 5$ or that $n \neq 6$ and $p > n^{3n^4}$. This result was greatly improved by Kostrikin [6], who proved that C_2 holds if $q > n - 6$. Recently in [3], Dornhoff was able to sharpen this to $2q > n - 3$.

Nearly two years ago, the author was able to show C_4 if either (i) n is a prime, or (ii) G is p-solvable, where p is the characteristic of the ground field [8]. (The result for the condition (ii) was recently independently proved by D. Passman [7].) The fact that C_4 is implied by the p-solvability of G seems to be more useful than the information quoted in the previous paragraph. As an easy application of this, we have that a finite group containing one conjugate class of subgroups of order p (p odd) has abelian p-Sylow subgroups if and only if elements of order p in S lie in the center of S (a result which figures in [4]). Moreover, Dornhoff was able to utilize this to show that C_4 (as well as C_3) is a consequence of $2q > n - 3$ (see the final section of [3]).

Theorem 1 is an easy consequence of the following more general theorem whose proof from first principles will appear elsewhere [9].

Theorem 2. Let A be a (not necessarily associative) finite dimensional algebra over $GF(q)$ where $q > 2$. Let B be a left ideal of A satisfying

1 These results were submitted to Pacific J. Math. in February and April of 1966 and, to the author's knowledge, still remain there, unrefereed.
We suppose that for any $a \in A$, left multiplication of A by a induces a linear transformation of A whose restriction to the subspace B is nilpotent. Suppose also that A admits a group of automorphisms which leaves B invariant and transitively permutes the 1-dimensional subspaces of B. Then $AB = 0$.

References

3. L. Dornhoff, p-automorphic p-groups and homogeneous algebras, In preprint, Yale University.

Southern Illinois University