FLATTENING A SUBMANIFOLD IN CODIMENSIONS ONE AND TWO

BY J. C. CANTRELL and R. C. LACHER

Communicated by O. G. Harrold, November 3, 1967

Let M and N be manifolds with $M \subset \text{Int } N$, and assume that $M - X$ is locally flat in N, where X is some subset of M. We are interested in finding conditions (intrinsic, placement, dimensional, etc.) which, when placed on X, imply that M is locally flat in N. Extremely useful and satisfying answers are provided by Bryant and Seebeck in [2], assuming that $\dim N - \dim M \geq 3$. We announce here a method for deducing local versions of Corollary 1.1 of [2] in codimensions one and two.

DEFINITIONS. If M is a manifold, a collaring of $\text{Bd } M$ in M is an embedding λ of $\text{Bd } M \times [0, \infty)$ into M such that $\lambda(x, 0) = x$ for each x in $\text{Bd } M$. We use \mathbb{R}^n to denote euclidean n-space, B^n the closed unit ball in \mathbb{R}^n.

THEOREM. For integers $0 \leq k < m \leq n$, let D be an m-cell in \mathbb{R}^n and let E be a k-cell in $\text{Bd } D$. Assume that the following condition is satisfied:

$D - E$ is locally flat in \mathbb{R}^n and E is locally flat in $\text{Bd } D$.

Then $(\mathbb{R}^n, D) \approx (\mathbb{R}^n, B^m)$ if and only if $E(\lambda|I)$ is locally flat in \mathbb{R}^n for some collaring λ of $\text{Bd } D$ in D.

The proof of this theorem is similar to the proof of Theorem 4.2 of [7]. Theorem 4.1 of [7] must be used more carefully to replace Corollary 3.2 of [7].

A detailed proof of the above theorem, together with applications and generalizations, will appear elsewhere. We present below the immediate implications of [2]. (Actually, in an earlier paper which is in press, Bryant and Seebeck prove a local form of Corollary 1.1 of [2] which is enough to yield the following applications.)

REMARK. There are no dimensional restrictions (other than $0 \leq k < m \leq n$) in the above Theorem.

APPLICATION 1. Let D be an m-cell in \mathbb{R}^n, and let E be a k-cell in $\text{Bd } D$. Assume that

$D - E$ and E are locally flat in \mathbb{R}^n, and E is locally flat in $\text{Bd } D$.

If $k \leq n - 4$ then $(\mathbb{R}^n, D) \approx (\mathbb{R}^n, B^m)$.

1 Supported by the National Science Foundation and a Alfred P. Sloan fellowship.

2 Supported by the National Science Foundation.
FLATTENING A SUBMANIFOLD

PROOF. Let \(\lambda \) be a collaring of \(\text{Bd } D \) in \(D \). If \(n \geq 4 \) and \(k = 0 \), then \(\lambda(E \times I) \) is locally flat in \(R^n \) by [3]. If \(n \geq 5 \), \(\lambda(E \times I) \) is locally flat in \(R^n \) by Corollary 1.1 of [2]. In either case the result follows from our Theorem.

REMARKS. 1. The analogue of Application 1 for \(k = n - 3 \geq 0 \) is false; the Theorem may still be applied to specific cases, however.

2. There are no restrictions on \(m \) and \(n \) in Application 1.

DEFINITION. Let \(\beta(n) \) denote the following conjecture: If \(D_1 \) and \(D_2 \) are locally flat \((n-1)\)-cells in \(R^n \) such that \(D_1 \cap D_2 = \text{Bd } D_1 \cap \text{Bd } D_2 \) is an \((n-2)\)-cell whose boundary is locally flat in both \(\text{Bd } D_1 \) and \(\text{Bd } D_2 \), then \(D_1 \cup D_2 \) is locally flat in \(R^n \).

Conjecture \(\beta(3) \) is proved in [5]. A proof of \(\beta(n) \), \(n \geq 5 \), is announced and outlined by Černavskii in [4]. \(\beta(4) \) has recently been proved by Černavskii and by R. C. Kirby.

APPLICATION 2. Let \(D \) be an \((n-1)\)-cell in \(R^n \), and let \(E \) be a \(k \)-cell in \(D \). Assume that

\[
(D, E) \text{ is a proper locally flat cell pair, and }
\]

\[
D - E \text{ and } E \text{ are locally flat in } R^n.
\]

If \(k \leq n - 4 \) then \((R^n, D) \approx (R^n, B^{n-1})\).

PROOF. Let \(f: (B^{n-1}, B^k) \approx (D, E) \) be a homeomorphism. (See [6].) Let \(D_1 = f(B^{n-1}) \) and \(D_2 = f(B^{n-1}) \). By Application 1, \(D_1 \) and \(D_2 \) are locally flat. By \(\beta(n) \), \(D \) is locally flat.

REMARKS. 1. The analogue of Application 2, with \(D \) an \((n-2)\)-cell, is false for \(n \geq 3 \).

2. The Theorem and Applications can be applied locally to embeddings of manifolds.

REFERENCES

University of Georgia,
University of California, Los Angeles, and
Institute for Advanced Study