Geometric programming: A unified duality theory for quadratically constrained quadratic programs and $l_p$-constrained $l_p$-approximation problems

Authors:
Elmor L. Peterson and J. G. Ecker

Journal:
Bull. Amer. Math. Soc. **74** (1968), 316-321

DOI:
https://doi.org/10.1090/S0002-9904-1968-11938-X

MathSciNet review:
0225572

Full-text PDF

References | Additional Information

**1.**R. J. Duffin, E. L. Peterson and C. Zener,*Geometric programming*, Wiley, New York, 1967. MR**214374****2.**R. J. Duffin and E. L. Peterson,*Duality theory for geometric programming*, SIAM J. Appl. Math. 14 (1966), 1307-1349. MR**211752****3.**D. Gale, H. W. Kuhn and A. W. Tucker,*Linear programming and the theory of games*, Cowles Commission Monograph No. 13 (1951). MR**46018****4.**G. B. Dantzig and A. Orden,*Duality theorems*, RAND Report RM-1265, The RAND Corporation, Santa Monica, Calif., October, 1953.**5.**J. B. Dennis,*Mathematical programming and electrical networks*, Wiley, New York, 1959. MR**108400****6.**W. S. Dorn,*Duality in quadratic programming*, Quart. Appl. Math. 18 (1960-1961), 155-162. MR**112751****7.**W. S. Dorn,*A duality theorem for convex programs*, IBM Journal, 4 (1960), 407-413. MR**114672****8.**P. Wolfe,*A duality theorem for nonlinear programming*, Quart. Appl. Math. 19 (1961), 239-244. MR**135625****9.**M. A. Hanson,*A duality theorem in nonlinear programming with nonlinear constraints*, Australian J. of Statistics 3 (1961), 64-72. MR**138508****10.**O. L. Mangasarian,*Duality in nonlinear programming*, Quart. Appl. Math. 20 (1962-1963), 300-302. MR**141530****11.**P. Huard, "Dual programs" in*Recent advances in mathematical programming*, McGraw-Hill, New York, 1963. MR**156708****12.**R. W. Cottle,*Symmetric dual quadratic programs*, Quart. Appl. Math. 21 (1963-1964), 237-243. MR**156707**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1968-11938-X