Artin's celebrated conjecture on primitive roots (Artin [1, p. viii], Hasse [2], Hooley [3]) suggests the following

Conjecture. Let S' be a set of rational primes. For each $q \in S'$, let L_q be an algebraic number field of degree $n(q)$. For every square-free integer k, divisible only by primes of S, define L_k to be the composite of all L_q, $q \mid k$, and denote $n(k) = \deg(L_k/Q)$. Assume that $\sum_k 1/n(k)$ converges, where the sum is over those k for which L_k is defined. Then the natural density of the set P of all primes p which do not split completely in each L_q exists and has the value $\sum_k \mu(k)/n(k)$, where μ is the M"obius function and the term $k = 1$ has been included with $\mu(1) = 1$.

If $S = \{\text{all rational primes}\}$, $L_q = \mathcal{O}(\xi_q, aq^\ell)$, $a \in \mathbb{Z}$, ξ_q a primitive qth root of 1, then the conjecture is equivalent to Artin's conjecture. If S is a finite set, then the conjecture is easily verifiable using the prime ideal theorem. For $S = \{\text{all rational primes}\}$, $L_q = \mathcal{O}(\xi_q)$, the conjecture has been proved by Knobloch [4] (for $r = 2$ and only for Dirichlet densities) and by Mirsky [5].

We have proved the following theorems, whose proofs will appear elsewhere.

Theorem 1. Let there exist a finite set $S_0 \subset S$ such that $L_q \supset \mathcal{O}(\xi_q)$ for $q \in S - S_0$, and L_q/Q is normal for all $q \in S$. Then the conjecture is true.

Theorem 2. Suppose that for each finite subset $S_0 \subset S$ there exists a family of algebraic number fields $\{L_q\}_{q \in S}$ such that

1. $L_q = L'_q$ for $q \in S_0$,
2. $L_q' \subset L_q$ for all $q \in S$,
3. $L_q' \neq Q$ for all $q \in S$,
4. the conjecture is true for $\{L'_q\}_{q \in S}$.

Then the conjecture is true for $\{L_q\}_{q \in S}$.

Theorem 3. If the density $d(P)$ of P exists, then

$$d(P) \leq \sum_k \mu(k)/n(k).$$

1 Research partially supported by Air Force Office of Scientific Research Grant No. SAR/F-44620-67.
Theorem 1 is the main result. Theorems 2 and 3 are elementary in character. The proof of Theorem 1 is divided into two parts: First, it is shown that one may compute the number of primes \(p \leq x \) in \(P \) by computing the number of primes \(p \leq x \) which do not split completely in \(L_q \) for all "sufficiently small \(q \)" where the upper bound for \(q \) is a function of \(x \). Computing this latter quantity is reduced to computing the number of prime ideals of \(L_k \) which have norm \(\leq x \), for all "sufficiently small \(k \)". The prime ideal theorem asserts that this latter quantity is asymptotically equal to \(x / \log x \). But the error term will, in general, depend on \(L_k \). The second part of the proof consists in showing that by restricting \(k \) to be "sufficiently small" one can choose the error term to be independent of \(k \). This result constitutes a generalization of the uniform prime number theorem of Siegel and Walfisz (Prachar [6, p. 144]) for primes in arithmetic progressions. In fact, we can prove our theorem in a very general setting, which, although not required for the proofs of Theorems 1–3, seems interesting for its own sake.

Let \(K \) be a normal algebraic number field of degree \(n \) and discriminant \(d \). Let \(\alpha \rightarrow \alpha^{(j)} (1 \leq j \leq n) \) be the embeddings of \(K \) in the complex numbers \(C \), ordered so that the first \(r_1 \) are real and the \(j \)th and \((j+r)\)th \((r_1+1 \leq j \leq r_1+r_2)\) constitute a pair of complex-conjugate embeddings. Let

\[
n_j = 1, \quad 1 \leq j \leq r_1
\]
\[
= 2, \quad r_1 + 1 \leq r_1 + r_2.
\]

For \(\alpha \in K^* = K - \{0\} \), let \(\alpha \equiv 1 \pmod* \alpha \) mean that \(\alpha \) is multiplicatively congruent to 1 modulo the \(K \)-ideal \(\alpha \). For \(\alpha \in K^* \), denote by \((\alpha)\) the \(K \)-ideal generated by \(\alpha \). Let \(\chi \) be a grossencharacter of \(K \) having conductor \(f \). For \(\alpha \equiv 1 \pmod* f \), let

\[
\chi((\alpha)) = \prod_{j=1}^{r_1+r_2} \left(\frac{\alpha^{(j)}}{|\alpha^{(j)}|} \right)^{n_j} |\alpha^{(j)}|^{\nu_{n_j, \phi_j}}
\]

where \(m_j = 0, 1 \) and \(\phi_j \in \mathbb{R} \) are normalized so that \(\sum_{j=1}^{r_1+r_2} n_j \phi_j = 0 \). Let

\[
\pi(x, K, \chi) = \sum_{N(p) = A \chi(p) n_j \phi_j = 0} \chi(p)
\]

where the sum is over primes \(p \) of \(K \). For \(A > 0 \), define \(B(A) = \{ \chi \) a grossencharacter of \(K \) | \(|\phi_j| \leq A, 1 \leq j \leq r_1 + r_2 \} \). Then we have the following generalization of the Siegel-Walfisz theorem:

Theorem 4. Let \(A > 0, \varepsilon > 0 \) be given. Then there exists a positive constant \(c = c(A, \varepsilon) \), not depending on \(K, n, d \), or \(\chi \) such that for \(\chi \in B(A) \),
\[\pi(x, K, \chi) = E(x) \ln x + O(Dx \log^2 x \exp\{ -c_n(\log x)^{1/2}/D \}), \quad x \to \infty \]

where the 0-term constant does not depend on \(K, \chi, n \) or \(d \) and

\[E(x) = 0, \quad \chi \neq \text{the trivial grossencharacter} \]
\[= 1, \quad \chi = \text{the trivial grossencharacter}, \]

\[\text{li } x = \int_2^x \frac{dy}{\log y}, \]

\[D = n^4[|d| N(f)]^s e^{-n}. \]

BIBLIOGRAPHY

Yale University