ON THE EXISTENCE OF EXCEPTIONAL FIELD EXTENSIONS

BY ROBERT GILMER AND WILLIAM HEINZER

Communicated by G. D. Mostow, January 15, 1968

Let F be a field of characteristic $p \neq 0$ and let K be an algebraic field extension of F. Let K_i denote the subfield of K of elements purely inseparable over F, K_s the subfield of separable elements, and K^n the normal closure of K/F. We say that K/F splits if $K = K_iK_s$ and following Reid’s terminology in [2], K is called an exceptional extension of F provided $K_i = F$ and $K_s \neq K$.

Lemma 1. K/F splits if and only if $K_i = (K^n)_i$.

Proof. If K/F splits it follows easily that $K_i = (K^n)_i$. Conversely assume that $K_i = (K^n)_i$. Then K^n/K is separable normal and hence a Galois extension. Since a normal extension splits we have $K^n = (K^n)_i(K^n)_s$ and if $a \in K$, $a = \sum a_a e_a$ with $a_a \in (K^n)_s$ and $\{e_a\}$ a linearly independent set of elements of $(K^n)_i = K_i$ over F. If σ is an automorphism of K^n/K then $\sigma(a) = a$ implies that $\sum (\sigma(a_a) - a_a)e_a = 0$. But K_i and $(K^n)_s$ are linearly disjoint over F so that $\{e_a\}$ is linearly independent over $(K^n)_i$. Hence $\sigma(a_a) = a_a$ and we have $a_a \in K \cap (K^n)_s = K_s$. Thus $K = K_sK_i$.

Theorem 2. If K/F is a simple extension then K/F splits if and only if K^n/F is simple.

Proof. If K/F splits then by Lemma 1, $K_i = (K^n)_i$ and it is clear that K^n/F is also simple.

If K^n/F is simple then K/F and $(K^n)_i/F$ are simple. Let $f(X)$ be the minimum polynomial of t over F, where t is chosen such that $K = F(t)$. Then K^n is the splitting field of $f(X)$ and we have

\[
\begin{align*}
(a) \quad \exp f(X) &= \exp((K^n)_i), \\
(b) \quad \exp f(X) &= [K: K_s].
\end{align*}
\]

Since $(K^n)_i/F$ is simple it follows that $\exp f(X) = [(K^n)_i : F]$ [3, pp. 120–123]. Hence $[K: K_s] = [(K^n)_iK_s : K_s]$ and since $K \subseteq (K^n)_s K_s$ we have $(K^n)_i K_s = K$ and $(K^n)_i = K_i$. By Lemma 1, K/F splits.

Our next lemma gives a method for constructing exceptional field extensions.

1 The first author received partial support from the National Science Foundation while this research was being done.
Lemma 3. Let \(a, b, \) and \(s \) be elements of an algebraic extension field of \(F \) with \(a \) and \(b \) purely inseparable over \(F \), \(s \) separable over \(F \) and not in \(F \). Let \(t=a+bs \) and \(K=F(t) \). Then \(F(a, b)=(K^n)_i \) and \(F(a, b)/F \) is generated by the coefficients of the minimum polynomial for \(t \) over \(F(a, b) \).

Proof. Let \(s=s_1, s_2, \ldots, s_n \) be a complete set of conjugates of \(s \) over \(F \) and let \(t_i=a+bs_i \). If \(e \) is a nonnegative integer such that \(a^s, b^s \in F \), then \(F(t_i^e)=F(s_i^e)=F(s_i) \). Hence \(F(s_1, \ldots, s_n) \subseteq F(t_1, \ldots, t_n) \). Also \(b=(t_1-t_2)(s_1-s_2)^{-1} \) so that \(b \), and hence \(a \), are in \(F(t_1, \ldots, t_n) \). It follows that \(F(t_1, \ldots, t_n)=F(a, b) \otimes F(s_1, \ldots, s_n) \). And since the \(t_i \) are conjugates over \(F \), we have \(F(t_1, \ldots, t_n)=K^n \) and \(F(a, b)=(K^n)_i \) [1, p. 50]. The minimum polynomial for \(t \) over \(F(a, b) \) is \(g=\prod_{i=1}^{n}(X-t_i) \). If \(F_0 \) is the subfield of \(F(a, b) \) obtained by adjoining the coefficients of \(g \) to \(F \), then \(F_0/F \) is purely inseparable and \(K^n/F_0 \) is separable. Therefore, \(F_0=(K^n)_i=F(a, b) \).

Remark 4. Reid calls a separable field extension \(E/F \) realizable if there exists an exceptional extension \(K/F \) with \(E=K^n \) [2]. Using Lemma 3 we can show that when \(F/F^p \) is not simple then any proper separable extension of \(F \) is realizable.

Theorem 5. Let \(K/F \) be normal and inseparable, but not purely inseparable. Then \(K/F \) is simple if and only if every subextension of \(K/F \) splits.

Proof. If \(K/F \) is simple and \(E \) is an intermediate field then we can take \(E^n \subseteq K \). Hence \(E^n/F \) is simple and by Theorem 2, \(E/F \) splits. Conversely if \(K/F \) is not simple then \(K_i/F \) is not simple. Hence there exist \(a, b \in K_i \) such that \(F(a, b)/F \) is not simple. We choose \(s \in K_i - F \) and set \(t=a+bs \). If \(E=F(t) \) then by Lemma 3, \(F(a, b) \subseteq E^n \) so that \(E^n/F \) is not simple. Hence by Theorem 2, \(E/F \) does not split.

Our next result gives necessary and sufficient conditions that a given normal inseparable extension \(K/F \) contain intermediate fields which are exceptional over \(F \).

Theorem 6. Let \(K/F \) be normal and inseparable but not purely inseparable. Let \(E \) be the maximal purely inseparable subfield of \(K/F \) of exponent one. Then \(E/F \) is simple if and only if \(K/F \) contains no exceptional subextensions.

Proof. If \(K/F \) contains an exceptional subextension then \(K \) contains an element \(t \) such that \(F(t)/F \) is exceptional of exponent one.

1 The proof of Lemma 3 indicated here is that of H. F. Kreimer; it simplifies an earlier proof due to the authors.
Thus $F(t)/F$ does not split and $F(t)^n$ is not simple by Theorem 2. Hence $(F(t)^n)_i$ is purely inseparable of exponent one and not simple. Thus E/F is not simple.

To prove the converse we assume that E/F is not simple and choose $a, b \in E$ such that $F(a, b)/F$ is not simple. Let $s \in K_* - F$ and, as in Lemma 3, set $t = a + bs$. Then $F(t)/F$ does not split and $F(a, b) = (F(t)^n)_i$. Moreover, $F(\psi) = F(s)$ is separable over F. Thus if $F(t) \cap F(a, b)$ properly contained F then $F(t)/F$ would necessarily split. Hence $F(t)_i = F$ and $F(t)/F$ is exceptional.

Corollary 7. If $F(t)/F$ is inseparable but not purely inseparable and if $f = \sum_{i=0}^e a_i t^i$ is the minimum polynomial for t over F, where $e = \exp f$, then $F(t)/F$ is exceptional if and only if $F(\{a_i^{1/p}\}_0)/F$ is not simple.

Proof. Sufficiency follows as in Theorem 2. Necessity follows from Theorem 6 and the fact that $F(\{a_i^{1/p}\}_0)$ is the maximal purely inseparable subfield of exponent one of $F(t)^n/F$.

In view of Theorem 6, if there exists a purely inseparable extension L of F such that L/F is not simple and such that E/F is simple where E is the maximal subfield of L/F of exponent one, then there exists a normal extension K of F such that K/F is not simple, but there are no intermediate exceptional extensions. If we take $F = P(X, Y, Z)$ where P is a perfect field and where $\{X, Y, Z\}$ is algebraically independent over P, and if $L = F(X^{1/p}, X^{1/p^2} + Y^{1/p}, X^{1/p^3}Z^{1/p})$, then it can be shown that $E = F(X^{1/p})$, providing the desired example.

References

Florida State University and
Louisiana State University, Baton Rouge