Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

An invariant for almost-closed manifolds


Author: David L. Frank
Journal: Bull. Amer. Math. Soc. 74 (1968), 562-567
MathSciNet review: 0222906
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, On the groups 𝐽(𝑋). IV, Topology 5 (1966), 21–71. MR 0198470 (33 #6628)
  • 2. D. Frank, The piecewise linear J-homomorphism and the smoothing problem, Notices Amer. Math. Soc. 13 (1966), 848.
  • 3. D. Frank, Reducible Thom complexes and the smoothing problem, Ph. D. Thesis, University of California, Berkeley, Calif., 1967.
  • 4. I. M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. (3) 9 (1959), 115–140. MR 0102810 (21 #1596)
  • 5. Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 0148075 (26 #5584)
  • 6. Mark Mahowald, On the order of the image of 𝐽, Topology 6 (1967), 371–378. MR 0212798 (35 #3663)
  • 7. John Milnor, Differentiable structures on spheres, Amer. J. Math. 81 (1959), 962–972. MR 0110107 (22 #990)
  • 8. D. Sullivan, Triangulating homotopy equivalences, mimeo. notes, Warwick, 1966.
  • 9. Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217 (26 #777)


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1968-12010-5
PII: S 0002-9904(1968)12010-5