Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Diffraction by a hyperbolic cylinder


Author: Clifford O. Bloom
Journal: Bull. Amer. Math. Soc. 74 (1968), 587-589
MathSciNet review: 0225542
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Joseph B. Keller, Diffraction by a convex cylinder, Div. Electromag. Res., Inst. Math. Sci., New York Univ., Res. Rep. No. EM-94 (1956), 10 pp. Also: Trans. I.R.E. AP-4 (1956), 312–321. MR 0094121 (20 #641)
  • 2. C. O. Bloom, Diffraction by a hyperbola, University Microfilms 26(1965), #65-6793, 384.
  • 3. F. Ursell, Creeping modes in a shadow, Proc. Cambridge Philos. Soc. 64 (1968), 171–191. MR 0219276 (36 #2359)
  • 4. Bertram R. Levy, Diffraction by an elliptic cylinder, J. Math. Mech. 9 (1960), 147–165. MR 0116866 (22 #7649)
  • 5. H. M. Nussenzveig, High-frequency scattering by an impenetrable sphere, Ann. Physics 34 (1965), 23–95. MR 0189455 (32 #6881)
  • 6. J. B. Keller and B. R. Levy, Decay exponents and diffraction coefficients for surface waves on surfaces of nonconstant curvature, I.R.E. Trans. Ap-7 (1959), Special Supplement.


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1968-12020-8
PII: S 0002-9904(1968)12020-8