GERŠGORIN THEOREMS BY HOUSEHOLDER'S PROOF

BY J. L. BRENNER

Communicated by I. Reiner, December 11, 1967

0. The method. Given an \(m \times m \) matrix \(A = [a_{ij}] \) of complex numbers, S. Geršgorin [4] proved that every proper value \(\lambda \) lies in the union of the \(m \) disks \(D_i \), where \(D_i = \{ \lambda \mid |\lambda - a_{ii}| < R_i, R_i = \sum_{j \neq i} |a_{ij}| \} \). Generalizations of this theorem have appeared in several papers, see for example [1], [3], [5], [7], [8], and a convenient summary in [6]. The theorem is derivable from the following (older) result, if we set \(B = A - \lambda I \).

Theorem 1. Let \(B = [b_{ij}] \) be a matrix of complex numbers. If \(B \) is not invertible, then for some \(i \) we must have \(|b_{ii}| \geq \sum_{j \neq i} |b_{ij}| = R_i \).

Corollary. \(\forall i \{ |b_{ii}| > R_i \} \Rightarrow B \) is invertible.

This is the contrapositive of Theorem 1. To prove Theorem 1, find \(x = \{x_1, x_2, \ldots, x_n\} \) so that \(Bx = 0 \); choose \(i \) so that \(x_i \neq 0 \) and \(\forall j \{ |x_i| \geq |x_j| \} \). Then \(|b_{ii}| \leq \sum |b_{ij}| \cdot |x_j| \leq R_i \).

Householder [5, p. 66] looks at the theorem from a different point of view. He writes \(B = D - C \), where \(D \) is the diagonal part of \(B \), i.e. \(D = [d_{ij}] \), \(d_{ij} = \delta_{ij} b_{ij} \), and \(C \) has zero diagonal. If \(\forall i \{ b_{ii} \neq 0 \} \), then \(B = D \left(I - D^{-1}C\right) \). The condition \(\|D^{-1}C\| < 1 \) guarantees that \(B \) be invertible. The corollary follows on applying this condition and using the row-sum norm.

1. A new result. In the preceding paragraph, a known result was recovered by Householder's method. This does not demonstrate the full power of the method. In this section, we obtain a new result by the same method. (This result can be obtained also by other methods; see [2].)

Definition. The notation

\[
B \begin{pmatrix} 1 & \cdots & n \\ 1 & \cdots & n \end{pmatrix}
\]

means the minor matrix obtained from the large matrix \(B \) by retaining only rows \(1 \cdots n \) and columns \(1 \cdots n \). The notation

\[
B \begin{pmatrix} 1 & \cdots & n \\ \{1 \cdots n\} \setminus \{l, j\} \end{pmatrix}
\]

625
means the minor matrix based on rows 1 \cdots n and columns 1 \cdots n, but with column \(t\) omitted and column \(j\) \((j>n)\) appended.

Lemma. Let \(c_{ik}\) be the \(i, k\) element of

\[
W = B \begin{pmatrix} 1 & \cdots & n \\ 1 & \cdots & n \end{pmatrix}^{-1}.
\]

Then

\[
\left| \det \left\{ WB \begin{pmatrix} 1 & \cdots & n \\ \{1, \ldots, n\} \{t, j\} \end{pmatrix} \right\} \right| = | \sum c_{ik}b_{kj} |.
\]

Proof. The matrix product \(Q\) on the left side of the lemma is equal to the identity matrix except in the \(t\)th column, which is replaced by the \(j\)th column as shown. The determinant of \(Q\) is therefore equal to the \(t, t\) element of \(Q\), i.e. the inner product of the \(t\)th row of \(W\) by the \(j\)th column of \(B\).

Theorem 2. Let \(B\) be an \(m \times m\) matrix of complex numbers; let \(S(1), S(2), \ldots\) be a partitioning of \(\{1 \cdots m\}\) into disjoint sets. Let

\[
V(r) = \begin{pmatrix} S(r) \\ S(r) \end{pmatrix}
\]

be the (principal) submatrix of \(B\) on the rows and columns with indices in \(S(r)\). Let

\[
U(r, j, t) = A \begin{pmatrix} S(r) \\ S(r) \{j, t\} \end{pmatrix}
\]

be the submatrix of \(B\) that uses rows with indices in \(S(r)\), and columns with indices from the same set, but with the column of index \(j\) deleted and the column of index \(t\) appended.

The matrix \(B\) is nonsingular if the following \(m\) inequalities hold among certain minor determinants of \(B\):

\[
\forall_j \in S(r) \forall_r \left\{ \begin{array}{c} | \det V(r) | > \sum_{t \in S(r)} | \det U(r, j, t) | \end{array} \right\}.
\]

Remark. If \(S(i) = \{i\}\), this theorem reduces to the Geršgorin corollary.

Proof. We write \(B = D - C = D(I - D^{-1}C)\) as before, but interpret \(D\) as the block diagonal \(V(1) + V(2) + \cdots\) of \(B\). If we apply the lemma (read from right to left) to the matrix \(D^{-1}C\), and use row-sum norm in the condition \(\|D^{-1}C\| < 1\), Theorem 2 follows.
Corollary. Every proper value of the matrix A lies in one or another of the m loci

$$
\left| \det \begin{pmatrix}
 a_{r,r} - \lambda & a_{r,r+1} \\
 a_{r+1,r} & a_{r+1,r+1} - \lambda
\end{pmatrix} \right| \leq \sum_{r \neq r+1} \left| \det \begin{pmatrix}
 a_{r,r} - \lambda & a_{r,t} \\
 a_{r+1,r} & a_{r+1,t}
\end{pmatrix} \right|,
$$

$$
\left| \det \begin{pmatrix}
 a_{r,r} - \lambda & a_{r,r+1} \\
 a_{r+1,r} & a_{r+1,r+1} - \lambda
\end{pmatrix} \right| \leq \sum'' \left| \det \begin{pmatrix}
 a_{r,t} & a_{r,r+1} \\
 a_{r+1,t} & a_{r+1,r+1} - \lambda
\end{pmatrix} \right|,
$$

$r = 1, 3, 5, \ldots, m-1$. (If m is odd, the last value of r is $m-2$, and the disk $|a_{mm} - \lambda| \leq R_m$ must be appended.)

This corollary has been used in numerical analysis, in a case in which complex numbers are replaced by 2×2 matrices.

References

Stanford Research Institute and University of British Columbia