PROOF OF A CONJECTURE OF HELSON

BY WALTER RUDIN

Communicated by H. Helson, March 1, 1968

Let m_n denote the Haar measure of the torus T^n, the distinguished boundary of the unit polydisc U^n in the space of n complex variables. If f is holomorphic in U^n, define

\[f^*(z) = \lim_{r \to 1} f(rz) \]

for those $z \in T^n$ for which this radial limit exists. Here $z = (z_1, \ldots, z_n)$, $rz = (rz_1, \ldots, rz_n)$. The various H^p-norms in U^n, for $0 < p < \infty$, $n = 1, 2, 3, \ldots$, are defined by

\[\|f\|_{p,n} = \sup_{0 < r < 1} \left\{ \int_{T^n} |f(rz)|^p dm_n(z) \right\}^{1/p}. \]

As in one variable, the inequality

\[\log |f(0)| \leq \int_{T^n} \log |f^*(z)| \, dm_n(z) \]

holds for every $f \in H^p(U^n)$. Define

\[\Delta(f) = \int_{T^n} \log |f^*(z)| \, dm_n(z) - \log |f(0)|. \]

For $f \in H^2(U^n)$, let $S(f)$ denote the H^2-closure of the set of all products Pf, where P ranges over the polynomials in n variables; $S(f)$ is the invariant subspace of $H^2(U^n)$ generated by f.

A very well-known theorem of Beurling states (in one variable) that

\[S(f) = H^2(U) \text{ if and only if } \Delta(f) = 0. \]

One of these implications holds equally well for several variables, as has been known for quite some time to Helson and Lowdenslager: If $f \in H^2(U^n)$ and $S(f) = H^2(U^n)$, then $\Delta(f) = 0$. Here is a sketch of a simple proof: (i) $\Delta(Pf) = \Delta(P) + \Delta(f) \geq \Delta(f)$ for all P. (ii) Δ is an upper semicontinuous function on $H^2(U^n)$. (iii) Therefore $\Delta(g) \geq \Delta(f)$ for every $g \in S(f)$.

1 Research partially supported by NSF Grant GP-6764.
Helson has conjectured that the converse is false for $n = 2$ (hence also for $n > 2$). Actually, Helson stated the problem somewhat differently, in terms that involve only the boundary values of the functions under consideration. This conjecture is correct:

Theorem. There exists a function $f \in H^2(U^2)$ such that $\Delta(f) = 0$ but $S(f) \not\in H^2(U^2)$.

The proof depends on the following two observations.

1. If $F \in H^\infty(U)$, if F has no zero in U, and if $f \in H^\infty(U^2)$ is defined by
 \begin{equation}
 f(z_1, z_2) = F((z_1 + z_2)/2),
 \end{equation}
 then $\Delta(f) = 0$.

2. Associate to each $f \in H^2(U^2)$ the function
 \begin{equation}
 \Psi f(\lambda) = f((1 + \lambda)/2, (1 + \lambda)/2) \quad (\lambda \in U).
 \end{equation}
 If $0 < p < \frac{1}{2}$, there is a constant $C_p < \infty$ such that
 \begin{equation}
 \|\Psi f\|_{p, 1} \leq C_p \|f\|_{2, 2}.
 \end{equation}
 Thus Ψ maps $H^2(U^2)$ into $H^p(U)$ if $p < \frac{1}{2}$. Note that Ψf is essentially the restriction of f to a certain disc in U^2 which touches T^2 at just one point.

Proof of (I). If $|\alpha| = 1$, $z \mapsto \alpha z$ is a measure-preserving map of T^2 onto T^2. Hence

\begin{equation}
\int_{T^2} dm_2(z) \int_T \log |f^*(\alpha z)| \ dm_1(\alpha) = \int_{T^2} \log |f^*(z)| \ dm_2(z),
\end{equation}

as is seen by interchanging the integrations on the left. If $z = (z_1, z_2) \in T^2$, if $z_1 \neq z_2$, and if $2w = z_1 + z_2$, then $|w| < 1$, so that

\begin{equation}
\log | F(0)| = \int_T \log | F(\alpha w) | \ dm_1(\alpha).
\end{equation}

This says that the inner integral on the left of (9) is equal to $\log |f(0)|$ whenever $z_1 \neq z_2$, which is true for almost all $z \in T^2$. Hence $\Delta(f) = 0$.

Proof of (II). For simplicity, assume $\|f\|_{2, 2} = 1$. Apply the Schwarz inequality to the Cauchy formula

\begin{equation}
f(\xi, \eta) = \int_{T^2} \frac{f^*(z_1, z_2)}{(1 - \bar{z}_1 \xi)(1 - \bar{z}_2 \eta)} \ dm_2(z)
\end{equation}

to obtain the estimate
\[|f(\xi, \zeta)| \leq \left\{ \int_{\mathbb{T}^2} |1 - \overline{\xi} \zeta|^{-2} |1 - \overline{\xi_2} \zeta_2|^{-2} dm_2(z) \right\}^{1/2} \]

\[= \int_{\mathbb{T}} |1 - \overline{w} \xi|^{-2} dm_1(w) = (1 - |\zeta|^2)^{-1} \]

if \(|\xi| < 1\). For \(\lambda = re^{i\theta}, 0 < r < 1\), it follows that

\[|(\Psi f)(\lambda)| \leq \left\{ 1 - \frac{1 + \lambda}{2} \right\}^{-1} \leq \{ r \sin^2 (\theta/2) \}^{-1} \]

which gives (8) with

\[C_p = \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} |\sin(\theta/2)|^{2p} d\theta \right\}^{1/p}. \]

Proof of the Theorem. Put \(F(\lambda) = \exp \{ (\lambda + 1)/(\lambda - 1) \}\) and associate \(f\) with \(F\) as in (I). Then \(\Delta(f) = 0\).

Fix \(q, 0 < q < \frac{1}{2}\). If \(P\) is any polynomial in two variables, (II) gives

\[\|1 - Pf\|_{2,2} \geq C_p^{-1}\|1 - \Psi P \cdot \Psi f\|_{p,1}. \]

Note that \((\Psi f)(\lambda) = e^{-1}F^2(\lambda)\). Thus \(e\Psi f\) is a nontrivial inner function in \(U\). Since multiplication by an inner function is an isometry in \(H^p(U)\) (relative to the metric given by \(\|g - h\|_{p,1}\) if \(p < 1\)) one sees that \(H^p(U)\Psi f\) is a closed subspace of \(H^p(U)\) which does not contain 1. The right side of (10) is therefore bounded below by some positive constant, and so (10) implies that 1 is not in \(S(f)\). Hence \(S(f) \neq H^2(U^2)\).

Reference

University of Wisconsin