BASIC SETS OF INVARIANTS FOR FINITE REFLECTION GROUPS

BY LEOPOLD FLATTO

Communicated by J. K. Moser, February 21, 1968

1. Introduction. Let \(V \) be an \(n \)-dimensional vector space over a field \(K \) of characteristic zero. Let \(G \) be a finite group of linear transformations of \(V \). \(G \) acts naturally as a group of automorphisms of the ring of polynomials \(K[x] \) if we define \((gP)(x) = P(g^{-1}x) \) for \(g \in G \), \(P(x) \in K[x] \). The polynomials which are invariant under \(G \) form an algebra \(I \) over \(K \) called the algebra of invariants of \(G \). A linear transformation is said to be a reflection if it has finite order and leaves fixed an \((n-1)\)-dimensional hyperplane, called its reflecting hyperplane. \(G \) is a finite reflection group if it is of finite order and is generated by reflections. Chevalley [5] has proved that for finite reflection groups, \(I \) has an integrity basis consisting of \(n \) algebraically independent forms \(I_1, \ldots, I_n \). Furthermore, Shephard and Todd [10] have shown that this property of \(I \) characterizes the finite reflection groups.

If \(K \) is the real field \(\mathbb{R} \), then \(G \) leaves invariant a positive definite quadratic form [2] so that \(G \) is orthogonal after a linear change of variables. Coxeter [3], [4] has classified all irreducible finite orthogonal reflection groups and has computed the degrees \(m_1, \ldots, m_n \) of the forms \(I_1, I_2, \ldots, I_n \). These degrees are independent of the particularly chosen basis. We provide a method for computing an explicit integrity basis of \(I \) for these groups. We will relate this problem to a certain mean value problem.

2. Construction of the basic set of invariants. We now state several theorems and sketch some of the proofs. Full details will appear elsewhere. Our first theorem yields a formula for the product of homogeneous invariants forming an integrity basis of \(I \).

Theorem 2.1. Let \(G \) be an irreducible finite orthogonal reflection group acting on the real \(n \)-dimensional space \(E_n \). Let \(P_m(x, y) = \sum_{\sigma \in S} (x \cdot \sigma y)^m \) \((1 \leq m < \infty) \), where \(x \cdot y = x_1y_1 + \cdots + x_ny_n \). Let \(J(x, y) = \partial(P_{m_1}, \ldots, P_{m_n})/\partial(x_1, \ldots, x_n) \), where \(m_1, \ldots, m_n \) denote the respective degrees of the basic invariant forms \(I_1, \ldots, I_n \). Then \(J(x, y) = \prod_{j=1}^n J_i(y) \prod_{i=1}^n L_i(x) \). The \(J_i's \) are homogeneous invariants.

1 Supported by National Science Foundation Grant GP-7352.

730
To prove the above theorem, we first establish the following lemma.

Lemma: Let \(\mathfrak{P} \) be the ideal generated by \(P_m(x, y) \), where \(1 \leq m < \infty \) and \(y \) ranges over all vectors. Let \(S_0 \) be the ideal generated by all invariants of \(G \) vanishing at 0. Then \(\mathfrak{P} = S_0 \).

Proof. Let \(f(x) \) be a continuous function on \(E_n \) satisfying the mean value property

\[
(2.1) \quad f(x) = \frac{1}{|G|} \sum_{s \in G} f(x + t\sigma y) \quad \text{for } x \in E_n, \ t > 0,
\]

\(y \) denoting a fixed vector \(\neq 0 \) and \(|G| = \text{order of } G \). The vectors \(\sigma y (\sigma \in G) \) do not lie in a hyperplane, as \(G \) is irreducible. It follows [9] that (2.1) is equivalent to

\[
(2.2) \quad f(x) \in C^\infty \quad \text{and} \quad P_m\left(\frac{\partial}{\partial x}, y\right)f = 0, \quad 1 < m < \infty.
\]

It is shown in [11] that the mean value property

\[
(2.3) \quad f(x) \in C \quad \text{and} \quad f(x) = \frac{1}{|G|} \sum_{s \in G} f(x + \sigma y) \quad \text{for all } x \text{ and } y
\]

is equivalent to

\[
(2.4) \quad f(x) \in C^\infty \quad \text{and} \quad s\left(\frac{\partial}{\partial x}\right)f = 0, \quad s \in S_0.
\]

Now (2.3) is clearly equivalent to (2.1) holding for all \(y \). We conclude that (2.4) is equivalent to (2.2) holding for all \(y \). It follows that \(S_0 = \mathfrak{P} \) [6].

We now outline the proof of Theorem 2.1.

Proof of Theorem 2.1. Let \(\tau \in G \). Then \(P_m(\tau x, y) = \sum_{s \in G}(\tau x \cdot \sigma y)^m = \sum_{s \in G}(x \cdot \tau^{-1} \sigma y)^m = \sum_{s \in G}(x \cdot \sigma y)^m = P_m(x, y) \). Thus, for fixed \(y \), \(P_m(x, y) \) is an invariant of \(G \) and is therefore a polynomial in \(I_1(x), \ldots, I_n(x) \). The \(m_i \)'s are distinct [4], so that we may assume \(m_1 < m_2 < \cdots < m_n \). A standard degree argument then shows

\[
(2.5) \quad P_m(x, y) = Q_i(x, y) + J_i(y)I_i(x), \quad 1 \leq i \leq n,
\]

where \(Q_1 = 0 \), \(Q_1 \in \langle I_1(x), \ldots, I_{i-1}(x) \rangle \) (\(2 \leq i \leq n \)), \(J_i(y) \) is a homogeneous polynomial of degree \(m_i \). \((I_1(x), \ldots, I_{i-1}(x)) \) denotes as
usual the ideal generated by $I_1(x), \ldots, I_{n-1}(x)$. A direct computation yields
$$
\partial(P_{m_1}, \ldots, P_{m_n})/\partial(x_1, \ldots, x_n) = J_i(y) \cdots J_n(y)
\cdot \partial(I_1, \ldots, I_n)/\partial(x_1, \ldots, x_n).
$$
It is shown in [4] that
$$
\partial(I_1, \ldots, I_n)/\partial(x_1, \ldots, x_n) = \prod_{i=1}^n L_i(x).
$$
We will now show that $J_i(y)$ is an invariant of G and $\partial(J_1, \ldots, J_n)/\partial(y_1, \ldots, y_n) \neq 0$. This condition, which is equivalent to saying that J_1, \ldots, J_n are algebraically independent, is precisely the criterion that the J_i's form and integrity basis of I [10]. We first obtain a formula for the J_i's.

We employ the following notation. For any sequence of nonnegative integers a_1, \ldots, a_n let
$$
a = (a_1, \ldots, a_n), \quad a! = a_1! \cdots a_n!, \quad |a| = a_1 + \cdots + a_n, \quad x^a = x_1^{a_1} \cdots x_n^{a_n}.
$$
Thus $(x \cdot y)^m = \sum_{|a|=m} m!/a!(x^a y^a)$.

Now
$$
\sum_{c_1 \in \mathcal{G}} \sum_{c_2 \in \mathcal{G}} (\sigma_1 x \cdot \sigma_2 y)^m = \sum_{c_1 \in \mathcal{G}} \sum_{c_2 \in \mathcal{G}} (x \cdot \sigma_2^{-1} \sigma_1 y)^m
$$
(2.6)
$$
= \sum_{c_1 \in \mathcal{G}} \sum_{c_2 \in \mathcal{G}} (x \cdot \sigma_2 y)^m = |G| P_m(x, y).
$$
Hence
$$
P_m(x, y) = \frac{1}{|G|} \sum_{c_1 \in \mathcal{G}} \sum_{c_2 \in \mathcal{G}} \sum_{|a|=m} m! (\sigma_1 x)^a \sigma_2 y^a
$$
(2.7)
$$
= \frac{1}{|G|} \sum_{|a|=m} m! J_a(x) J_a(y),
$$
where $J_a(x) = \sum_{c \in \mathcal{G}} (\sigma x)^a$. Since $J_a(x)$ is invariant under G, we have for $m = m_i$

$$
(2.8) \quad J_a(x) = F_a(I_1(x), \ldots, I_{n-1}(x)) + c_a I_i(x), \quad |a| = m_i,
$$
where F_a is a polynomial in I_1, \ldots, I_{n-1} ($F_a = 0$ for $|a| = m_1$) and the c_a's are constants. As a polynomial in x_1, \ldots, x_n, F_a is homogeneous of degree m_i. If $c_a = 0$ for all a ($|a| = m_i$), then we readily conclude that $I_i \notin \mathcal{F}$, contradicting the lemma. Thus $c_a \neq 0$ for some a, $|a| = m_i$. Substituting (2.8) into (2.7) and comparing with (2.5) we obtain,

$$
J_i(y) = \frac{1}{|G|} \sum_{|a|=m_i} m! \frac{c_a}{a!} F_a(I_1(y), \ldots, I_{n-1}(y))
$$
(2.9)
$$
+ \left(\frac{1}{|G|} \sum_{|a|=m_i} m! \frac{c_a}{a!} c_a \right) I_i(y),
$$
so that $J_i(y)$ is invariant under G $(1 \leq i \leq n)$. A direct computation shows
\[
\frac{\partial(J_1, \ldots, J_n)}{\partial(y_1, \ldots, y_n)} = \frac{1}{|G|^n} \prod_{i=1}^{n} \left(\sum_{|a|=m_i} \frac{m!}{a!} c_a \right) \frac{\partial(I_1, \ldots, I_n)}{\partial(y_1, \ldots, y_n)}.
\]

Since \(\sum_{|a|=m_i} (m!/a!) c_a \neq 0 \) for \(1 \leq i \leq n \), we conclude \(\frac{\partial(J_1, \ldots, J_n)}{\partial(y_1, \ldots, y_n)} \neq 0 \). We obtain immediately from Theorem 2.1 the

Corollary. Let \(y \) be a fixed vector \(\neq 0 \). \(P_{m_1}(x, y), \ldots, P_{m_n}(x, y) \) form an integrity basis of \(I \) iff \(J_1(y) \cdots J_n(y) \neq 0 \).

The following theorem gives an algorithm for computing the \(J_i \)'s.

Theorem 2.2. Let \(J(x, y) = (\partial P_i/\partial x_i) \). Choose from the first \(i \) rows of \(J(x, y) \) an \(i \times i \) minor \(D_i(x, y) \) which is not identically zero. Then \(D_i(x, y) = A_i(x)B_i(y) \), where \(A_i(x) \) and \(B_i(y) \) are polynomials not identically zero. \(B_i(y) = J_i(y) \cdots J_i(y) \) so that \(J_i(y) = B_i(y)/B_{i-1}(y) \) (for all \(y \)) with \(B_0(y) = 1 \).

It is shown in [11] that the solution space to (2.4) is given by \(DII \) where \(DII \) denotes the linear span of the partial derivatives of \(\Pi(x) = \prod_{i=1}^{n} L_i(x) \). Let \(\mathfrak{I}_y \) be the ideal generated by \(P_m(x, y) \) (\(1 \leq m < \infty \)) where \(y \) is a fixed vector \(\neq 0 \). The solution space \(S \) to (2.1) (or its equivalent (2.2)) = \(DII \) iff \(S_0 = \mathfrak{I}_y \) [6]. It follows easily from (2.5) that \(S_0 = \mathfrak{I}_y \) iff \(J_1(y) \cdots J_n(y) \neq 0 \). We thus obtain

Theorem 3.1. Let \(y \) be a fixed vector \(\neq 0 \). The solution space \(S \) to (2.1) = \(DII \) iff \(J_1(y) \cdots J_n(y) \neq 0 \).

3. The "vertex" conjecture. In view of Theorem (3.1) it is natural to ask whether there exists some canonical procedure for obtaining a vector \(y \) such that \(J_1(y) \cdots J_n(y) \neq 0 \). The symmetry groups of the regular polyhedra centered at the origin form a subclass of the irreducible finite orthogonal reflection groups [3]. For these groups, it is conjectured that \(y \) may be chosen as any vertex of the regular polyhedron. We refer to this conjecture as the "vertex" conjecture. It is equivalent to the following theorem.

Theorem 3.1. Let \(y_1, \ldots, y_N \) denote the vertices of the \(n \)-dimensional polyhedron \(\pi_n \) centered at the origin. Let \(f(x) \) be continuous in the \(n \)-dimensional region \(R \) and let it satisfy the mean value property

\[
f(x) = \frac{1}{N} \sum_{i=1}^{N} f(x + ty_i), \quad x \in R, \quad 0 < t < t_\ast.
\]

Then the solution space \(S \) to (3.1) = \(DII \).
The "vertex" conjecture has previously been established for special polyhedra \[1], \[8], \[12]. We have verified it for all cases, with the exception of the \(n\)-dimensional cube. In the latter case, it is equivalent to the following

UNSOLVED PROBLEM. Let \(P_{2n}(x) = \sum_{k} (\pm x_1 \pm x_2 \pm \cdots \pm x_n)^{2k}\).

Are \(P_2(x), P_4(x), \cdots, P_{2n}(x)\) algebraically independent?

REFERENCES