Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Basic sets of invariants for finite reflection groups


Author: Leopold Flatto
Journal: Bull. Amer. Math. Soc. 74 (1968), 730-734
DOI: https://doi.org/10.1090/S0002-9904-1968-12017-8
MathSciNet review: 0225892
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. F. Beckenbach and M. Reade, Regular solids and harmonic polynomials, Duke Math J. 12 (1945), 629-644. MR 14562
  • 2. W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge Univ. Press, New York, 1911.
  • 3. H. S. M. Coxeter, Regular polytopes, Methuen, London, 1948.
  • 4. H. S. M. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math J 18 (1951), 765-782. MR 45109
  • 5. C Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782. MR 72877
  • 6. E. Fischer, Über algebraische Modulsysteme und lineare homogene partiel Differentialgleichungen mit konstaten Koeffizienten, J. Reine Angew, Math. 140 (1911), 48-81.
  • 7. L. Flatto, Functions with a mean value property, J. Math. Mech, 10 (1961), 11-18. MR 136751
  • 8. L. Flatto, Functions with a mean value property. II, Amer. J. Math. 85 (1963), 248-270. MR 158087
  • 9. A. Friedman and W, Littman, Functions satisfying the mean value property, Trans. Amer. Math. Soc. 102 (1962), 167-180. MR 151628
  • 10. G, C, Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304. MR 59914
  • 11. R. Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392-400. MR 167535
  • 12. J. L. Walsh, A mean value theorem for polynomials and harmonic polynomials, Bull. Amer. Math. Soc. 42 (1936), 923-926.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1968-12017-8

American Mathematical Society