STRONG CARLEMAN OPERATORS ARE OF HILBERT-SCHMIDT TYPE

JOACHIM WEIDMANN

Communicated by C. B. Morrey, Jr., February 5, 1968

This is the solution of a problem posed by G. Targonski [6, §13 V]: Do unbounded strong Carleman operators exist? In fact, we shall prove that every strong Carleman operator is a Hilbert-Schmidt operator (hence it is certainly bounded).

1. Definitions and known results. Carleman operators are usually defined in the space $L_2(a, b)$ where $a \leq -\infty, b \leq \infty$; without any restriction of generality we may assume that $-\infty < a < b < \infty$. There are several definitions of a Carleman operator used in the literature (e.g. T. Carleman [1], M. Stone [5], G. Targonski [6]; for “semi-Carleman operators” see M. Schreiber [4]). We shall mainly follow the definition used by G. Targonski, but in addition to his definition we shall assume that a Carleman operator is densely defined (e.g. §3).

DEFINITIONS. A densely defined operator K in the Hilbert space $L_2(a, b)$ is called a Carleman operator if it allows a representation of the form

$$(Kf)(x) = \int_a^b K(x, y)f(y)dy$$

for almost all x, where $\int_a^b |K(x, y)|^2dy < \infty$ for almost all x. The domain of K consists of all elements $f \in L_2(a, b)$ such that $\int_a^b K(x, y)f(y)dy$ (which is defined for almost all x) represents an element of $L_2(a, b)$.

An operator K is called a strong Carleman operator if UKU^* is a Carleman operator for every unitary operator U. An operator K in a Hilbert space is a Hilbert-Schmidt operator (or K is of Hilbert-Schmidt type) if for every orthonormal system (ϕ_n), $\sum_n |K\phi_n|^2 < \infty$ (this series has the same value for all complete orthonormal systems).

It is known (e.g. [6]) that every Hilbert-Schmidt operator is a strong Carleman operator. In [6] it is also shown that bounded strong Carleman operators are of Hilbert-Schmidt type. Using the result of this note we may say: An operator in $L_2(a, b)$ is a strong Carleman operator if and only if it is a Hilbert-Schmidt operator.

We shall use the following known results:

THEOREM I ([6, Lemmata 9.1 and 9.2]). If K is a strong Carleman operator and B is bounded, then BK and KB are strong Carleman operators.
THEOREM II ([3, SATZ 4], [6, PROOF OF LEMMA 9.5]). For every selfadjoint Carleman operator, 0 is a limit point of its spectrum; the spectrum of a selfadjoint strong Carleman operator has at most the limit points $-\infty$, 0 and ∞.

THEOREM III ([2, VI.2.7]). A densely defined closed operator K in a Hilbert space can be factorized as $K = UT$, where T is selfadjoint (non-negative) and U is a partial isometry with initial set $\text{Cl}(\mathcal{R}(T))$ and final set $\text{Cl}(\mathcal{R}(K))$ ($\text{Cl} =$ closure).

2. Proofs. The proof of our first theorem is almost the same as the proof of [6, Theorem 9.2].

THEOREM 1. Every selfadjoint strong Carleman operator is of Hilbert-Schmidt type.

PROOF. Let K be a selfadjoint strong Carleman operator. Theorem II asserts that the spectrum of K consists of a sequence (λ_n) of eigenvalues with limit point 0 (and eventually $\pm \infty$). Since K is a strong Carleman operator there exists for any complete orthonormal system (ϕ_n) a unitary transformation U and a kernel $K_U(x, y)$ such that

$$\int_a^b |K_U(x, y)|^2 dy < \infty,$$

$$(UKU^* \rho_n)(x) = \lambda_n \rho_n(x), \quad (UKU^* f)(x) = \int_a^b K_U(x, y)f(y)dy$$

for almost all x and $f \in \mathcal{D}(UKU^*) = \mathcal{D}(K)$. This implies that $\lambda_n \rho_n(x)$ are the Fourier coefficients of the L_2-function $K_U(x, y)$ (as a function of y) with respect to the complete orthonormal system (ρ_n). Since $K_U(x, y)$ (as a function of y) is in $L_2(a, b)$ for almost all x, this implies $\sum_n |\lambda_n \rho_n(x)|^2 < \infty$ for almost all x. Let us now chose the complete orthonormal system

$$\rho_n(x) = (b - a)^{-1/2} \exp\{2\pi i nx/(b - a)\};$$

it follows that $\sum_n |\lambda_n|^2 < \infty$, i.e. K is a Hilbert-Schmidt operator.

THEOREM 2. Every Carleman operator is closed.

PROOF. Let K be a Carleman operator, $(u_n) \subset \mathcal{D}(K)$, $u_n \to u$, $Ku_n \to v$. We may write

$$(Kw)(x) = F[z][w] \quad \text{for almost all } x, w \in \mathcal{D}(K),$$

where $F[z]$ is a family of bounded linear functionals in $L_2(a, b)$. Obviously
(Ku_n)(x) - F_x[u] = F_x[u_n] - F_x[u] \to 0 \quad \text{for almost all } x.

By assumption Ku_n \to v in L_2(a, b); hence there exists a subsequence (u_{n_k}) of (u_n) such that (Ku_{n_k})(x) - v(x) \to 0 for almost all x. This implies that v(x) = F_x[u] for almost all x, i.e. u \in \mathcal{D}(K) and Ku = v.

Theorem 3. Every strong Carleman operator is a Hilbert-Schmidt operator.

Proof. Let K be a strong Carleman operator; then K is closed by Theorem 2. Hence by Theorem III K = UT where T is selfadjoint and U is a partial isometry with initial set Cl(R(T)) and final set Cl(R(K)). Then U^*U is a partial isometry with initial and final set Cl(R(T)), hence T = U^*K. By Theorem I T is a selfadjoint strong Carleman operator and consequently by Theorem 1 T is of Hilbert-Schmidt type. Hence K = UT is a Hilbert-Schmidt operator.

3. Remarks on operators which are not densely defined. It is possible to neglect "densely defined" in the definition of a Carleman operator. The kernel \(K(x, y) = g(x)h(y) \) (\(g \in L_2(a, b), h \in L_2(a, b) \)) for example defines a Carleman operator of this type:

\[Kf = 0 \quad \text{if } (f, h) = 0 \]
\[= \text{not defined} \quad \text{if } (f, h) \neq 0. \]

The main disadvantage of these operators is the fact that the kernel is not uniquely determined by the operator (in the above example, \(g \) is an arbitrary function not contained in \(L_2(a, b) \)).

Let K be a strong Carleman operator (in the corresponding sense, i.e. not necessarily densely defined) then \(KP \) is a strong Carleman operator, where \(P \) is the orthogonal projection onto \(Cl(D(K)) \). Since \(KP \) is densely defined we may apply the results of §2 and find: \(KP \) is a Hilbert-Schmidt operator.

References

Institut für Angewandte Mathematik, University of Heidelberg