PLANARITY IN ALGEBRAIC SYSTEMS

BY MICHAEL ANSHEL AND JAMES R. CLAY

Communicated by R. S. Pierce, March 8, 1968

Planarity was introduced into algebra by Marshall Hall in his well-known coordinatization of a projective plane by a planar ternary ring [4]. In [6], J. L. Zemmer defines a near-field to be planar when the equation $ax - bx + c$ has a unique solution for $a \neq b$. In our investigation of planarity, we discovered that if $(N, +, \cdot)$ is a near-ring satisfying the above equational property, then $(N, +, \cdot)$ is a near-field. (This was conjectured by both D. R. Hughes and J. L. Zemmer in private communications.) We present some extensions of this result together with geometric interpretations of “planar” near-rings.

Definitions and notations. By a left distributive system is meant a triple $(N, +, \cdot)$ such that multiplication \cdot is left distributive over addition $+$. Elements $a, b \in N$ are called left equivalent multipliers, denoted by $a \equiv_m b$ if $ax = bx$ for all $x \in N$. The relation \equiv_m is discrete when $a \equiv_m b$ implies $a = b$. A left distributive system is said to possess the planar property if the equation $ax - bx + c$ has a unique solution for $a \neq b$.

DEFINITION. A left distributive system $(N, +, \cdot)$ with planar property is a planar system if

1. in $(N, +)$ the right cancellation law is valid;
2. in $(N, +)$ there is an identity 0;
3. (N, \cdot) is a semi-group;
4. there are at least three points in N, no two of which are left equivalent multipliers.

A planar system is integral if 0 is the only left zero divisor.

Main results. Let $(N, +, \cdot)$ be an integral planar system. Then $0 \cdot x = x \cdot 0 = 0$ for all $x \in N$. Let 1_a be the solution to the equation $a \cdot x = a$, $a \neq 0$, and $B_a = \{x \in N^* | x \cdot 1_a = x\}$, where N^* denotes the nonzero elements of N. We have the following

THEOREM 1. Let $(N, +, \cdot)$ be an integral planar system. Then
(i) each (B_a, \cdot) is a group with identity 1_a;
(ii) the family $\{B_a\}_{a \in N^*}$ is pairwise disjoint;
(iii) $N^* = \bigcup_{a \in N^*} B_a$.

1 The second author received support from NSF contract #GP-2141.

746
(iv) \(N^*B_a = B_a \) for each \(a \in N^* \);
(v) if \(a, c \in N^* \), then \(\phi: B_a \rightarrow B_c \) defined by \(\phi(x) = x1_c \) is an isomorphism;
(vi) each \(1_a \) is a left identity for \((N, +, \cdot) \).

Corollary. Let \((N, +, \cdot) \) be a near-ring that is an integral planar system with \(=_m \) discrete. Then \((N, +, \cdot) \) is a planar near-field.

Proof. If \(a, b \in N^* \), then \(1_a = 1_b \).

In the sequel a near-ring that is an integral planar system will be called an integral planar near-ring.

Theorem 2. Suppose \((N, +, \cdot) \) is an integral planar near-ring and each \(B_a = \{0\} \cup B_a \) is an additive normal subgroup. Also suppose that no \(B_a = N \) but any two \(B_a, B_b \) generate \(N \) under \(+ \). Then

(i) each \((B_a, +, \cdot) \) is a near-field;
(ii) \((B_a, +, \cdot) \) is isomorphic to \((B_c, +, \cdot) \) if \((x+y)1_e = x1_c + y1_e \) for all \(x, y \in B_a \);
(iii) \((N, +) \) is abelian and is isomorphic to the direct sum \(B_a \oplus B_e \) as groups;
(iv) the points of \(N \) are the points of an affine plane \(A \) with the cosets of the \(B_a \) as lines;
(v) the plane \(A \) can be coordinatized by a skew field.

Proof. The group \((N, +) \) is a \(\Phi(I, IV) \) group \([5]\). A \(\Phi(I, IV) \) group is abelian since \(x \rightarrow x + g \) induces a translation on \(A \) and so Axiom 4a is satisfied (p. 58 of \([1]\)). Axiom 4bP (p. 63 of \([1]\)) holds at \(0 \in N \) where \(x \rightarrow tx \) are the required dilatations.

Theorem 3. Suppose \((N, +, \cdot) \) is a finite integral planar near-ring and each \(B_a = \{0\} \cup B_a \) is an additive subgroup. Also suppose that no \(B_a = N \) but any two \(B_a, B_b \) generate \(N \) under \(+ \). Then

(i) \((N, +) \) is abelian;
(ii) the affine plane \(A \) determined by \(N \) can be coordinatized by a field \((F, +, \cdot)\);
(iii) each \((B_a, +, \cdot) \) is a field;
(iv) each \(B_a = \{(x, mx) | x \in F\} \) for some \(m \in F \), or \(B_a = \{(0, x) | x \in F\} \).

Proof. Each \((B_a, +, \cdot) \) is a near-field, hence \((N, +) \) is a \(p \)-group. Now \((B_a, +) \) is contained in the center of \((N, +) \) for some \(a \in N^* \), hence \((N, +) \) is abelian since \(N = B_a + B_e \). A finite skew field is a field, and each \((B_a, +, \cdot) \) is isomorphic to the coordinization skew field.

Examples. 1. Let \((F, +, \cdot) \) be a field. Define \(+_\lambda \) (\(\lambda \neq 0 \)) by \(a +_\lambda b = b \) if \(a = 0 \), \(a +_\lambda b = a + (\lambda b) \) when \(a \neq 0 \). Then \((F, +_\lambda, \cdot) \) is a nontrivial
integral planar system where \(\otimes \) is discrete and \(+\) is not necessarily associative.

2. Let \((\mathbb{R} \times \mathbb{R}, +)\) be additive group of complex numbers. Define \(\cdot\) by
 \[(a, b) \cdot (c, d) = \| (a, b) \| (c, d)\]
 where \(\| - \|\) is any norm on \(\mathbb{R} \times \mathbb{R}\). Then
 \((\mathbb{R} \times \mathbb{R}, +, \cdot)\) is an integral planar near-ring.

3. Let \((\mathbb{R} \times \mathbb{R}, +)\) be as in 2. Define \(\cdot\) by
 \[(a, b) \cdot (c, d) = (a, b)^\wedge (c, d)\]
 where
 \[(a, b)^\wedge = 0 \text{ if } a = b = 0; \text{ otherwise } (a, b)^\wedge \text{ is the first nonzero coordinate.}\]
 Then \((\mathbb{R} \times \mathbb{R}, +, \cdot)\) is an integral planar near-ring.

4. Let \((\mathbb{R} \times \mathbb{R}, +)\) be as in 2. Define \(*\) by
 \[(a, b) * (c, d) = (a, b)/\|(a, b)\| \cdot (c, d)\]
 where
 \[(a, b) = (a^2 + b^2)^{1/2} \neq 0 \text{ and } \cdot \text{ denotes the usual multiplication of complex numbers.}\]
 If \((a, b) = (0, 0)\), then
 \[(a, b)^* (c, d) = (0, 0)\]. Then \((\mathbb{R} \times \mathbb{R}, +, \cdot)\) is an integral planar near-ring.

5. Table 1 defines a multiplication \(\cdot\) on the cyclic group \((\mathbb{Z}_5, +)\) such that
 \((\mathbb{Z}_5, +, \cdot)\) is an integral planar near-ring. Note that
 \[B_1 = \{1, 4\}, B_2 = \{2, 3\}.\]
 Define
 \[B_i = B_i \cup \{0\} \text{ and } B_{ij} = B_i + j, \ i = 1, 2; j \in \mathbb{Z}_5.\]

\[
\begin{array}{cccc}
 \cdot & 0 & 1 & 2 & 3 & 4 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 1 & 2 & 3 & 4 \\
 2 & 0 & 4 & 3 & 2 & 1 \\
 3 & 0 & 1 & 2 & 3 & 4 \\
 4 & 0 & 4 & 3 & 2 & 1 \\
\end{array}
\]

Table 1

we let \(I = \mathbb{Z}_5\), then the \(B_{ij}\) are circles of an inverse plane [3]. This example was obtained using a digital computer. (See [2].)

It is of interest to graph the left identities and the \(B_a\) in each of the Examples 2, 3, and 4.

BIBLIOGRAPHY

5. V. P. Zarovnyi, Interpretation of the plane axioms of affine geometry in an abstract group, Ukrain. Mat. Z. 10 (1958), 351–364.

UNIVERSITY OF ARIZONA