NONEXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS

BY HERBERT B. KELLER

Communicated by E. Isaacson, March 18, 1968

We consider nonlinear eigenvalue problems of the general form:

(1) \[Lu = F(\lambda, x, u), \quad x \in D, \]

(2) \[\beta(x) \frac{\partial u}{\partial \nu} + \alpha(x) u = 0, \quad x \in \partial D. \]

Here \(x = (x_1, x_2, \ldots, x_m) \) and

\[
L\phi \equiv \sum_{i,j=1}^{m} \partial_{i}[a_{ij}(x)\partial_{j}\phi] - a_0(x)\phi, \quad a_{ij}(x) = a_{ji}(x) \quad x \in D;
\]

\[
\sum_{i,j=1}^{m} a_{ij}(x)\xi_i\xi_j \geq a^2 \sum_{i=1}^{m} \xi_i^2, \quad a^2 > 0; \quad a_0(x) \equiv 0
\]

(3) \[
\frac{\partial \phi}{\partial \nu} \equiv \sum_{i,j=1}^{m} n_i(x)a_{ij}(x)\partial_{j}\phi \quad \alpha(x)\beta(x) \geq 0, \quad \alpha(x) \neq 0, \quad \alpha(x) + \beta(x) > 0 \quad x \in \partial D.
\]

All coefficients and the derivatives of the \(a_{ij}(x) \) are continuous on the appropriate closed sets \(\overline{D} \) or \(\partial D \), and the latter is piecewise smooth with exterior unit normal vector \((n_1(x), n_2(x), \ldots, n_m(x)) \) at \(x \in \partial D \). We first prove a simple but useful result on conditions for the nonexistence of positive solutions of (1)–(2).

Theorem 1. Let \(F(\lambda, x, z) \) be continuous on \(x \in D, z > 0 \). For any positive continuous function \(r(x) \) on \(\overline{D} \), let \(\mu_1 \{ r \} \) be the least eigenvalue of

1 This work was supported under Contract DAHC 04-68-C-0006 with the U. S. Army Research Office (Durham).

887
\[L\psi + \mu r(x)\psi = 0, \quad x \in D, \]
\[\beta(x)\psi/\partial v + \alpha(x)\psi = 0, \quad x \in \partial D. \]

Then (1)–(2) has no positive solution for any \(\lambda \in \Lambda \{r\} \) where

\[\Lambda \{r\} = \{ \lambda \mid F(\lambda, x, z) + \mu_1 \{r\} r(x)z \neq 0, \quad \text{all } x \in D, z > 0 \}. \]

Proof. Suppose (1)–(2) has a positive solution, \(u(x) > 0, x \in D \), for a given fixed \(\lambda \). Then this solution trivially satisfies

\[Lu + \mu_1 \{r\} r(x)u = F(\lambda, x, u) + \mu_1 \{r\} r(x)u \]

and (2). Since \(L \) is selfadjoint, the right-hand side must be orthogonal to \(\psi_1(x) \), the eigenfunction of (4) belonging to \(\mu_1 \{r\} \). From (3) it follows that \(\psi_1(x) \) is of one sign on \(D \). Thus the orthogonality relation requires that the continuous right-hand side change sign on \(D \). Hence \(\lambda \in \Lambda \{r\} \).

Of course piecewise continuous \(F(\lambda, x, u) \) and \(r(x) > 0 \) are easily included by replacing \(\neq 0 \) in definition (5) by either alternative: \(> 0 \) or \(< 0 \). The above theorem generalizes some nonexistence results contained in Keller & Cohen [1].

We now consider some special cases of (1)–(2) in which positive solutions are known or conjectured to exist. The problems are of the form:

\[Lu + \lambda r(x)u = f(x, u), \quad x \in D, \]
\[\beta(x)\partial u/\partial v + \alpha(x)u = 0, \quad x \in \partial D, \]

where \(r(x) \) is continuous and positive on \(D \).

Some nonexistence results for the above problem are a simple consequence of Theorem 1.

Corollary 1.1. (a) For some constant \(k \) let \(f(x, z) > kr(x)z \) for all \(z > 0 \) and \(x \in D \). Then (6) has no positive solutions for any \(\lambda \leq \mu_1 \{r\} + k \).

(b) For some constant \(k \) let \(f(x, z) < kr(x)z \) for all \(z > 0 \), and \(x \in D \). Then (6) has no positive solution for any \(\lambda \leq \mu_1 \{r\} + k \).

Proof. (a) \(F(\lambda, x, z) \equiv f(x, z) - \lambda r(x)z > (k - \lambda) r(x)z \geq -\mu_1 \{r\} r(x)z \) for \(z > 0 \) if \(\lambda \leq \mu_1 \{r\} + k \). Then \(\lambda \in \Lambda \{r\} \).

(b) As above, we see that \(F(\lambda, x, z) < -\mu_1 \{r\} r(x)z \) if \(\lambda \geq \mu_1 \{r\} + k \).

Note that \(k \) in the Corollary may have either sign, but the case \(k = 0 \) is of particular interest. It implies that if (6) is to have positive solutions for all \(\lambda \geq 0 \), then \(f(x, z) \) must change sign on \(z > 0, x \in D \).

In a recent paper D. S. Cohen [2] proves that (6) has unique positive solutions for \(0 \leq \lambda < \mu_1 \{r\} \) when \(f(x, z) \equiv -f(x) + g(x, z) \) where:
\[f(x) < 0, \quad g(x, z) > 0, \quad g^*(x, z) > 0, \quad g^*_*(x, z) > 0 \quad \text{and} \quad g^*_*(x, z) > g(x, z) \text{ for} \]
all \(z > 0, \, x \in D \). It can be shown that if \(f(x, 0) < 0, \, f_s(x, z) > 0 \) for all \(z > 0, \, x \in D \) and \(\lim_{z \to \infty} f_s(x, z) = \infty \), then (6) has positive solutions for all \(\lambda \). Under these conditions D. Cohen has observed that a result of Levinson [3] implies that (6), with \(L \equiv \Delta \) and \(\beta \equiv 0 \), has solutions for all values of \(\lambda \). We shall show that positive solutions of (6) are unique if only \(f_s(x, z) \) is increasing in \(z \) for \(z > 0 \) and \(f(x, 0) \leq 0 \).

Theorem 2. Let \(f(x, z) \) have a continuous \(z \)-derivative and satisfy for all \(x \in D \):

\[
\begin{align*}
\text{(a) } & f(x, 0) = f_0(x) \leq 0, \\
\text{(b) } & f_s(x, z) > f_s(x, z') > 0 \quad \text{if } z > z' > 0.
\end{align*}
\]

Then positive solutions of (6) are unique (for all \(\lambda \) for which they exist).

Proof. Assume \(u(x) \) and \(v(x) \) are distinct positive solutions of (6) for the same value of \(\lambda \). Then since \(f_s(x, z) \) is continuous for \(z > 0 \), we have

\[
 f(x, u(x)) - f(x, v(x)) = q(x, u(x), v(x)) [u(x) - v(x)]
\]

where

\[
 q(x; u, v) = \int_0^1 f_s(x, tu(x) + (1 - t)v(x)) \, dt.
\]

Thus with \(w(x) = u(x) - v(x) \), we obtain from (6) for \(u \) and \(v \):

\[
\begin{align*}
Lw + [\lambda r(x) - q(x; u, v)]w &= 0, \quad x \in D, \\
\beta(x) \partial w / \partial v + \alpha(x) w &= 0, \quad x \in \partial D.
\end{align*}
\]

Noting that \(f(x, u(x)) - f(x, 0) = q(x; u(x), 0)u(x) \) we can write (6) as

\[
\begin{align*}
L u + [\lambda r(x) - q(x; u, 0)]u &= f_0(x), \quad x \in D, \\
\beta(x) \partial u / \partial v + \alpha(x) u &= 0, \quad x \in \partial D.
\end{align*}
\]

Now consider the two eigenvalue problems, with eigenvalue parameters \(\sigma \) and \(\tau \):

\[
\begin{align*}
L \phi + [\sigma r(x) - q(x; u, v)] \phi &= 0, \quad x \in D, \\
\beta(x) \partial \phi / \partial \nu + \alpha(x) \phi &= 0, \quad x \in \partial D; \\
L \psi + [\tau r(x) - q(x; u, 0)] \psi &= 0, \quad x \in D, \\
\beta(x) \partial \psi / \partial \nu + \alpha(x) \psi &= 0, \quad x \in \partial D.
\end{align*}
\]

The least eigenvalue, \(\sigma_1 \) and \(\tau_1 \) respectively, of each of these problems can be characterized by the variational principle:
\[\sigma_1 = \min_{\phi \in \mathcal{A}} \left\{ Q[\phi] + \int_D \int q(x; u, v) \phi^2(x) \, dx \right\} / H[\phi], \]

\[\tau_1 = \min_{\phi \in \mathcal{A}} \left\{ Q[\phi] + \int_D \int q(x; u, 0) \phi^2(x) \, dx \right\} / H[\phi]. \]

Here the class of admissible functions is, say, \(\mathcal{A} = \{ \phi \in C(D) \cap C'(\Omega) : \phi(x) = 0, x \in \partial D_1 \} \) where \(\beta(x) = 0 \) if and only if \(x \in \partial D_1, \partial D = \partial D_1 \cup \partial D_2, \partial D_1 \cap \partial D_2 = \emptyset \) and:

\[Q[\phi] = \int_D \int \left(\sum_{i,j=1}^m a_{ij}(x) \partial_i \phi \partial_j \phi + a_0(x) \phi^2 \right) \, dx + \int_{\partial D} \frac{\alpha(x)}{\beta(x)} \phi^2 \, ds, \]

\[H[\phi] = \int_D \int r(x) \phi^2 \, dx. \]

Since \(f_s(x, z) \) is increasing in \(z \) for \(s > 0 \) and \(v(x) > 0 \) on \(D \), we must have for all \(x \in D, \)

\[q(x; u(x), v(x)) > q(x; u(x), 0). \]

Thus from the above variational principle it follows that

\[\sigma_1 > \tau_1. \]

By assumption, \(w(x) \neq 0 \), and so the parameter \(\lambda \) appearing in (9) must be some eigenvalue of the problem (11a). Since \(\sigma_1 \) is the least eigenvalue of that problem we must have \(\lambda \geq \sigma_1 > \tau_1 \). Now write (10) as:

\[Lu + [\tau_1 r(x) - q(x; u, 0)] u = f_0(x) + [\tau_1 - \lambda] r(x) u(x), \quad x \in D, \]

\[\beta(x) \partial u / \partial v + \alpha(x) u = 0, \quad x \in \partial D. \]

But \(\tau_1 \) is the least eigenvalue of (11b) and so the right-hand side in the above differential equation must be orthogonal to \(\psi_1(x) \), the eigenfunction belonging to \(\tau_1 \). However, this is impossible since \(\psi_1(x) \) is of one sign on \(D \) and, since \(u(x) \) is a positive solution,

\[f_0(x) + (\tau_1 - \lambda) r(x) u(x) < 0 \quad \text{on } D. \]

The contradiction implies \(w(x) = 0 \). \(\square \)

The above proof remains valid if we relax the monotonicity condition (7b) to just nondecreasing derivative, \(f_s(x, z) \geq f_s(x, z'), z > z' > 0; \) but strengthen condition (7a) to \(f_0(x) < 0 \). Clearly our result also applies to the case with \(f \equiv f(\lambda, x, u) \) provided (7) holds for the appropriate values of \(\lambda \).
Many additional results have been obtained under the hypothesis of Theorem 2; namely: (i) positive solutions of (6) are increasing functions of \(\lambda \) for all \(x \in D \); (ii) the set of \(\lambda \) for which positive solutions of (6) exist is open above; (iii) if \(f_0(x) = 0 \), then (6) has no positive solutions for all \(\lambda \leq \lambda_1 \) where \(\lambda_1 \) is the least eigenvalue of

\[
L\phi + [\lambda r(x) - f_4(x; 0)]\phi = 0, \quad x \in D,
\]

\[
\beta(x)\frac{\partial \phi}{\partial n} + \alpha(x)\phi = 0, \quad x \in \partial D;
\]

(iv) if \(f_0(x) < 0 \) on \(D \), then (6) has positive solutions for all \(\lambda < \lambda_1 \); (v) if \(f_0(x) < 0 \) on \(D \) and a positive solution of (6) exists for some \(\lambda' \), then positive solutions exist for all \(\lambda \leq \lambda' \).

Also, we can show that (6) has a positive solution for arbitrarily large \(\lambda \) if in addition to (7) and \(f_0(x) < 0 \) on \(D \) we have \(\lim_{x \to \infty} f_4(x, z) = +\infty \) on \(D \). Combined with (v) above and Theorem 2 this yields unique positive solutions of (6) for all \(\lambda \). The results in (i)–(v) are proven by combining the technique in Theorem 2 with the use of the Positivity Lemma as in [1], and are thus constructive results. Variational procedures are employed to show existence for arbitrarily large \(\lambda \). The detailed proofs will be given elsewhere.

REFERENCES

